4.7 Article

Anisotropic microstructure and superelasticity of additive manufactured NiTi alloy bulk builds using laser directed energy deposition

出版社

ELSEVIER SCIENCE SA
DOI: 10.1016/j.msea.2016.07.059

关键词

Electron microscopy; X-ray diffraction; Mechanical characterization; Shape memory alloys; Additive manufacturing; Martensitic transformation

资金

  1. National Science Foundation (United States) [DGE1255832]
  2. National Science Foundation [CMMI 1335283]

向作者/读者索取更多资源

The microstructure and superelasticity in additive manufactured NiTi shape memory alloys (SMAs) were investigated. Using elementally blended Ni and Ti powder feedstock, Ni-rich build coupons were fabricated via the laser-based directed energy deposition (LDED) technique. The build volumes were large enough to extract tensile and compressive test specimens from selected locations for spatially resolving microconstituents and the underlying stress-induced martensitic phase transformation (SIMT) morphology. In the as-deposited condition, X-ray diffraction identified the B2 atomic crystal structure of the austenitic parent phase in NiTi SMAs, and Ni4Ti3 precipitates were the predominant microconstituent identified through scanning electron microscopy. The microstructure exhibited anisotropy, which was characterized by the Ni4Ti3 precipitate morphology being coarsest nearest the substrate, while a finer morphology was observed farthest from the substrate. In-situ full-field deformation measurements calculated using digital image correlation confirmed that the SIMT predominately occurred in the finer precipitate morphology. Heat treatment reduced the degree of anisotropy, and DIC analysis revealed localized SIMT strains increased compared to the as-deposited condition. (C) 2016 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据