4.3 Article

Tailoring degradation of AZ31 alloy by surface pre-treatment and electrospun PCL fibrous coating

出版社

ELSEVIER
DOI: 10.1016/j.msec.2016.04.017

关键词

AZ31 magnesium alloy; Acid pre-treatment; Electrospinning; Polycaprolactone; Biodegradation; Biomineralization

向作者/读者索取更多资源

AZ31 magnesium alloy was coated with polycaprolactone (PCL) nano-fibrous layer using electrospinning technique so as to control degradation in physiological environment. Before coating, the alloy was treated with HNO3 to have good adhesion between the coating and substrate. To elucidate the role of pre-treatment and coating, samples only with PCL coating as well as HNO3 treatment only were prepared for comparison. Best coating adhesion of 4B grade by ASTM D3359-09 tape test was observed for pre-treated samples. The effect of coating on in vitro degradation and biomineralization was studied using supersaturated simulated body fluid (SBF 5x). The weight loss and corrosion results obtained by immersion test showed that the combination of HNO3 pre-treatment and PCL coating is very effective in controlling the degradation rate and improving bioactivity. Cytotoxicity studies using L6 cells showed that PCL coated sample has better cell adhesion and proliferation compared to uncoated samples. Nano-fibrous PCL coating combined with prior acid treatment seems to be a promising method to tailor degradation rate with enhanced bioactivity of Mg alloys. (C) 2016 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.3
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据