4.6 Article

Genotypic Diversity, Antibiotic Resistance, and Virulence Phenotypes of Stenotrophomonas maltophilia Clinical Isolates from a Thai University Hospital Setting

期刊

ANTIBIOTICS-BASEL
卷 12, 期 2, 页码 -

出版社

MDPI
DOI: 10.3390/antibiotics12020410

关键词

Stenotrophomonas maltophilia; mutilocus sequence typing; antibiotic resistance; multidrug resistance; biofilm; motility; toxin; enzyme

向作者/读者索取更多资源

This study investigated the demographic, genotypic, and phenotypic characteristics of Stenotrophomonas maltophilia isolates from a hospital in Thailand. Male and aged patients were more susceptible to infection with this bacterium. The bacteria exhibited various drug resistance patterns, genetic profiles, and phenotypes, supporting their virulence and pathogenicity. Understanding the characteristics of this bacterium is important for controlling and preventing its spread in Thailand.
Stenotrophomonas maltophilia is a multidrug-resistant organism that is emerging as an important opportunistic pathogen. Despite this, information on the epidemiology and characteristics of this bacterium, especially in Thailand, is rarely found. This study aimed to determine the demographic, genotypic, and phenotypic characteristics of S. maltophilia isolates from Maharaj Nakorn Chiang Mai Hospital, Thailand. A total of 200 S. maltophilia isolates were collected from four types of clinical specimens from 2015 to 2016 and most of the isolates were from sputum. In terms of clinical characteristics, male and aged patients were more susceptible to an S. maltophilia infection. The majority of included patients had underlying diseases and were hospitalized with associated invasive procedures. The antimicrobial resistance profiles of S. maltophilia isolates showed the highest frequency of resistance to ceftazidime and the lower frequency of resistance to chloramphenicol, levofloxacin, trimethoprim/sulfamethoxazole (TMP/SMX), and no resistance to minocycline. The predominant antibiotic resistance genes among the 200 isolates were the smeF gene (91.5%), followed by bla(L1) and bla(L2) genes (43% and 10%), respectively. Other antibiotic resistance genes detected were floR (8.5%), intI1 (7%), sul1 (6%), mfsA (4%) and sul2 (2%). Most S. maltophilia isolates could produce biofilm and could swim in a semisolid medium, however, none of the isolates could swarm. All isolates were positive for hemolysin production, whereas 91.5% and 22.5% of isolates could release protease and lipase enzymes, respectively. In MLST analysis, a high degree of genetic diversity was observed among the 200 S. maltophilia isolates. One hundred and forty-one sequence types (STs), including 130 novel STs, were identified and categorized into six different clonal complex groups. The differences in drug resistance patterns and genetic profiles exhibited various phenotypes of biofilm formation, motility, toxin, and enzymes production which support this bacterium in its virulence and pathogenicity. This study reviewed the characteristics of genotypes and phenotypes of S. maltophilia from Thailand which is necessary for the control and prevention of S. maltophilia local spreading.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据