4.7 Article

Sample pre-concentration with high enrichment factors at a fixed location in paper-based microfluidic devices

期刊

LAB ON A CHIP
卷 16, 期 5, 页码 925-931

出版社

ROYAL SOC CHEMISTRY
DOI: 10.1039/c5lc01365h

关键词

-

资金

  1. Ministry of Science and Technology of Taiwan [MOST 103-2221-E-006-093-MY3, MOST 104-2221-E-006-154-MY3]

向作者/读者索取更多资源

The lack of sensitivity is a major problem among microfluidic paper-based analytical devices (mu PADs) for early disease detection and diagnosis. Accordingly, the present study presents a method for improving the enrichment factor of low-concentration biomarkers by using shallow paper-based channels realized through a double-sided wax-printing process. In addition, the enrichment factor is further enhanced by exploiting the ion concentration polarization (ICP) effect on the cathodic side of the nanoporous membrane, in which a stationary sample plug is obtained. The occurrence of ICP on the shallow-channel mu PAD is confirmed by measuring the current-voltage response as the external voltage is increased from 0 to 210 V (or the field strength from 0 to 1.05 x 10(4) V m(-1)) over 600 s. In addition, to the best of our knowledge, the electroosmotic flow (EOF) speed on the mu PAD fabricated with a wax-channel is measured for the first time using a current monitoring method. The experimental results show that for a fluorescein sample, the concentration factor is increased from 130-fold in a conventional full-thickness paper channel to 944-fold in the proposed shallow channel. Furthermore, for a fluorescein isothiocyanate-labeled bovine serum albumin (FITC-BSA) sample, the proposed shallow-channel mu PAD achieves an 835-fold improvement in the concentration factor. The concentration technique presented here provides a novel strategy for enhancing the detection sensitivity of mu PAD applications.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据