4.8 Article

Supramolecular glasses with color-tunable circularly polarized afterglow through evaporation-induced self-assembly of chiral metal-organic complexes

期刊

NATURE COMMUNICATIONS
卷 14, 期 1, 页码 -

出版社

NATURE PORTFOLIO
DOI: 10.1038/s41467-023-37331-0

关键词

-

向作者/读者索取更多资源

In this study, the authors report supramolecular glasses based on self-assembled chiral metal-organic complexes with color-tunable circularly polarized afterglow. These materials can achieve multicolored circularly polarized emissions and have potential applications in optical displays and information storage. The research provides a method for the macroscopic self-assembly of chiral metal-organic hybrids and offers supramolecular glasses with wide-tunable afterglow and large circular polarization.
Material designs with multicolor circularly polarized emissions are desirable for photonic applications. Here, the authors report supramolecular glasses based on self-assembled chiral metal-organic complexes with color-tunable circularly polarized afterglow. The fabrication of chiral molecules into macroscopic systems has many valuable applications, especially in the fields of optical displays, data encryption, information storage, and so on. Here, we design and prepare a serious of supramolecular glasses (SGs) based on Zn-L-Histidine complexes, via an evaporation-induced self-assembly (EISA) strategy. Metal-ligand interactions between the zinc(II) ion and chiral L-Histidine endow the SGs with interesting circularly polarized afterglow (CPA). Multicolored CPA emissions from blue to red with dissymmetry factor as high as 9.5 x 10(-3) and excited-state lifetime up to 356.7 ms are achieved under ambient conditions. Therefore, this work not only communicates the bulk SGs with wide-tunable afterglow and large circular polarization, but also provides an EISA method for the macroscopic self-assembly of chiral metal-organic hybrids toward photonic applications.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据