4.6 Article

Improving copper(II) ion detection and adsorption from wastewater by the ligand-functionalized composite adsorbent

期刊

JOURNAL OF MOLECULAR STRUCTURE
卷 1282, 期 -, 页码 -

出版社

ELSEVIER
DOI: 10.1016/j.molstruc.2023.135259

关键词

Composite adsorbent; Copper(II) ions; Sensitive detection; Selective removal; Contaminated water

向作者/读者索取更多资源

In this study, a functional organic ligand, 4-tert-Octyl-4-((phenyl)diazenyl)phenol (TPDP), was directly immobilized onto mesoporous silica to fabricate a composite adsorbent for the detection and removal of toxic copper (Cu(II)) ions from contaminated water. The composite adsorbent showed high sensitivity and selectivity towards Cu(II) ions, with a limit of detection of 0.28 μg/L. The adsorbent exhibited a high adsorption capacity, with a maximum adsorption capacity of 184.73 mg/g. The Cu(II) ions could be eluted and the adsorbent could be regenerated for reuse. This ligand-based composite adsorbent offers a low-cost and efficient method for the detection and removal of Cu(II) ions in real waste sample treatment.
The functional organic ligand of 4-tert-Octyl-4-((phenyl)diazenyl)phenol (TPDP) was immobilized directly onto the mesoporous silica for the fabrication of composite adsorbent to detect and remove the toxic copper (Cu(II)) ions from contaminated water. The mesoporous silica and the composite adsorbent were characterized systematically using different instrumentations. Upon addition of a trace amount of Cu(II) with composite adsorbent, a significant color was formed to visualize the Cu(II) ion detection at opti-mum experimental protocol. The pH played a key factor in the detection and removal operation and the optimum pH was 4.0 for this study. The effect of pH, color optimization, contact time, competing ions, and concentration was assessed systematically both in the detection and removal operations. The limit detection by the composite adsorbent to Cu(II) ion was 0.28 mu g/L. The diverse metal ions did not inter -fere during the Cu(II) ion detection and removal by the composite adsorbent and complied with the high sensitivity for onsite uses as potential materials. The proposed adsorbent also exhibited high adsorption capacity and was well-fitted in the Langmuir adsorption isotherms in monolayer coverage and the max-imum adsorption capacity was as high as 184.73 mg/g. The Cu(II) ion was eluted from the composite adsorbent using 0.15 M HCl and then simultaneously regenerated into the initial stage without losing its major functionality for the next use operation. However, the adsorption efficiency was slightly decreased after several cycles of use according to the data. Then it is estimated that the fabricated ligand-based composite adsorbent in the real waste sample treatment for detection and removal of Cu(II) ions as a low-cost material without using highly sophisticated instrumentations. (c) 2023 Published by Elsevier B.V.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据