4.7 Article

Developing a glyphosate-bioremediation strategy using plants and actinobacteria: Potential improvement of a riparian environment

期刊

JOURNAL OF HAZARDOUS MATERIALS
卷 446, 期 -, 页码 -

出版社

ELSEVIER
DOI: 10.1016/j.jhazmat.2022.130675

关键词

Phytoremediation; Herbicide; Riparian vegetation; Bioinoculant; Organic pollutant

向作者/读者索取更多资源

Glyphosate and its degradation product AMPA were detected in soils from a riparian environment in Argentina. Sixty-five actinobacteria were isolated from these soils, rhizosphere, and plants. The bioinoculant Streptomyces sp. S5 was selected for a greenhouse test, and the combination of plants, actinobacteria, and their combinations were evaluated for bioremediation of the riparian soil. The results showed that the addition of actinobacterium significantly increased the dissipation of both compounds.
Glyphosate (Gly) and its principal degradation product, the aminomethylphosphonic acid (AMPA) were found in soils from a riparian environment in Argentina. Sixty-five actinobacteria were isolated from these soils, rhizo-sphere, and plants (Festuca arundinacea and Salix fragilis). The isolate Streptomyces sp. S5 was selected to be used as bioinoculant in a greenhouse test, in which plants, actinobacteria, and their combinations were assessed to bioremediate the riparian soil. The dissipation of both compounds were estimated. All treatments dissipated similarly the Gly, reaching 87-92 % of dissipation. AMPA, dissipation of 38 % and 42 % were obtained by Salix and Festuca, respectively, while they increased to 57 % and 70 % when the actinobacterium was added to each planted system. Regarding the total dissipation, the higher efficiencies for both compounds were achieved by the non-planted soils bioaugmented with the actinobacterium, with 91 % of Gly dissipated and 56 % for AMPA. According to our study, it could be suggested which strategy could be applied depending on the bioremediation type needed. If in situ bioremediation is necessary, the combination of phytoremediation and actinobacteria bioaugmentation could be convenient. On the other hand, if ex situ bioremediation is needed, the inoculation of the soil with an actinobacterium capable to dissipate Gly and AMPA could be the more efficient and easier alternative.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据