4.2 Article

Eu(III) and Am(III) adsorption on aluminum (hydr)oxide minerals: surface complexation modeling

期刊

GEOCHEMICAL TRANSACTIONS
卷 24, 期 1, 页码 -

出版社

BMC
DOI: 10.1186/s12932-023-00081-5

关键词

Surface complexation modeling; Americium adsorption; Aluminum (hydr)oxide minerals; Corundum; Gamma-alumina; Gibbsite; Europium adsorption

向作者/读者索取更多资源

This study investigated the adsorption behavior of europium, uranium, and americium on aluminum (hydr)oxide minerals using various surface complexation models. The results showed that these models could accurately predict the adsorption behavior of various heavy metal elements, indicating that europium can be used as an analog for predicting the adsorption behavior of americium on mineral surfaces.
Americium is a highly radioactive actinide element found in used nuclear fuel. Its adsorption on aluminum (hydr)oxide minerals is important to study for at least two reasons: (i) aluminum (hydr)oxide minerals are ubiquitous in the subsurface environment and (ii) bentonite clays, which are proposed engineered barriers for the geologic disposal of used nuclear fuel, have the same equivalent to AlOH sites as aluminum (hydr)oxide minerals. Surface complexation modeling is widely used to interpret the adsorption behavior of heavy metals on mineral surfaces. While americium sorption is understudied, multiple adsorption studies for europium, a chemical analog, are available. In this study we compiled data describing Eu(III) adsorption on three aluminum (hydr)oxide minerals-corundum (alpha-Al2O3), gamma-alumina (gamma-Al2O3) and gibbsite (gamma-Al(OH)(3))-and developed surface complexation models for Eu(III) adsorption on these minerals by employing diffuse double layer (DDL) and charge distribution multisite complexation (CD-MUSIC) electrostatic frameworks. We also developed surface complexation models for Am(III) adsorption on corundum (alpha-Al2O3) and gamma-alumina (gamma-Al2O3) by employing a limited number of Am(III) adsorption data sourced from literature. For corundum and gamma-alumina, two different adsorbed Eu(III) species, one each for strong and weak sites, were found to be important regardless of which electrostatic framework was used. The formation constant of the weak site species was almost 10,000 times weaker than the formation constant for the corresponding strong site species. For gibbsite, two different adsorbed Eu(III) species formed on the single available site type and were important for the DDL model, whereas the best-fit CD-MUSIC model for Eu(III)-gibbsite system required only one Eu(III) surface species. The Am(III)-corundum model based on the CD-MUSIC framework had the same set of surface species as the Eu(III)-corundum model. However, the log K values of the surface reactions were different. The best-fit Am(III)-corundum model based on the DDL framework had only one site type. Both the CD-MUSIC and the DDL model developed for Am(III)-gamma-alumina system only comprised of one site type and the formation constant of the corresponding surface species was similar to 500 times stronger and similar to 700 times weaker than the corresponding Eu(III) species on the weak and the strong sites, respectively. The CD-MUSIC model for corundum and both the DDL and the CD-MUSIC models for gamma-alumina predicted the Am(III) adsorption data very well, whereas the DDL model for corundum overpredicted the Am(III) adsorption data. The root mean square of errors of the DDL and CD-MUSIC models developed in this study were smaller than those of two previously-published models describing Am(III)-gamma-alumina system, indicating the better predictive capacity of our models. Overall, our results suggest that using Eu(III) as an analog for Am(III) is practical approach for predicting Am(III) adsorption onto well-characterized minerals.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.2
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据