4.4 Article

Weak Jets and Strong Cyclones: Shallow-Water Modeling of Giant Planet Polar Caps

期刊

JOURNAL OF THE ATMOSPHERIC SCIENCES
卷 73, 期 4, 页码 1841-1855

出版社

AMER METEOROLOGICAL SOC
DOI: 10.1175/JAS-D-15-0314.1

关键词

-

资金

  1. NSF [ATM-0850639, AGS-1032244, AGS-1136480]
  2. ONR [N00014-14-1-0062]

向作者/读者索取更多资源

Giant planet tropospheres lack a solid, frictional bottom boundary. The troposphere instead smoothly transitions to a denser fluid interior below. However, Saturn exhibits a hot, symmetric cyclone centered directly on each pole, bearing many similarities to terrestrial hurricanes. Transient cyclonic features are observed at Neptune's South Pole as well. The wind-induced surface heat exchange mechanism for tropical cyclones on Earth requires energy flux from a surface, so another mechanism must be responsible for the polar accumulation of cyclonic vorticity on giant planets. Here it is argued that the vortical hot tower mechanism, claimed by Montgomery et al. and others to be essential for tropical cyclone formation, is the key ingredient responsible for Saturn's polar vortices. A 2.5-layer polar shallow-water model, introduced by O'Neill et al., is employed and described in detail. The authors first explore freely evolving behavior and then forced-dissipative behavior. It is demonstrated that local, intense vertical mass fluxes, representing baroclinic moist convective thunderstorms, can become vertically aligned and accumulate cyclonic vorticity at the pole. Ascaling is found for the energy density of the model as a function of control parameters. Here it is shown that, for a fixed planetary radius and deformation radius, total energy density is the primary predictor of whether a strong polar vortex forms. Further, multiple very weak jets are formed in simulations that are not conducive to polar cyclones.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据