4.7 Article

Genome-Wide Gene Expression Profiling of Randall's Plaques in Calcium Oxalate Stone Formers

期刊

出版社

AMER SOC NEPHROLOGY
DOI: 10.1681/ASN.2015111271

关键词

-

资金

  1. Ministry of Education, Culture, Sports, Science and Technology, Japan [15H04976, 15K10627, 25861443]
  2. Japanese Society on Urolithiasis Research
  3. Japanese Urological Association
  4. Takeda Science Foundation
  5. Medical Research Encouragement Prize of the Japan Medical Association
  6. Grants-in-Aid for Scientific Research [16K11054, 15K10628, 15K10627, 15K20103, 15H04976, 25861443, 16K15692] Funding Source: KAKEN

向作者/读者索取更多资源

Randall plaques (RPs) can contribute to the formation of idiopathic calcium oxalate (CaOx) kidney stones; however, genes related to RP formation have not been identified. We previously reported the potential therapeutic role of osteopontin (OPN) and macrophages in CaOx kidney stone formation, discovered using genome-recombined mice and genome-wide analyses. Here, to characterize the genetic pathogenesis of RPs, we used microarrays and immunohistology to compare gene expression among renal papillary RP and non-RP tissues of 23 CaOx stone formers (SFs) (age- and sex-matched) and normal papillary tissue of seven controls. Transmission electron microscopy showed OPN and collagen expression inside and around RPs, respectively. Cluster analysis revealed that the papillary gene expression of CaOx SFs differed significantly from that of controls. Disease and function analysis of gene expression revealed activation of cellular hyperpolarization, reproductive development, and molecular transport in papillary tissue from RPs and non-RP regions of CaOx SFs. Compared with non-RP tissue, RP tissue showed upregulation (>2-fold) of LCN2, IL11, PTGS1, GPX3, and MMD and downregulation (0.5-fold) of SLC12A1 and NALCN (P<0.01). In network and toxicity analyses, these genes associated with activated mitogenactivated protein kinase, the Akt/phosphatidylinositol 3-kinase pathway, and proinflammatory cytokines that cause renal injury and oxidative stress. Additionally, expression of proinflammatory cytokines, numbers of immune cells, and cellular apoptosis increased in RP tissue. This study establishes an association between genes related to renal dysfunction, proinflammation, oxidative stress, and ion transport and RP development in CaOx SFs.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据