4.8 Article

Multi-objective optimization of latent energy storage in buildings by using phase change materials with different melting temperatures

期刊

APPLIED ENERGY
卷 336, 期 -, 页码 -

出版社

ELSEVIER SCI LTD
DOI: 10.1016/j.apenergy.2023.120806

关键词

Energy-efficient building; Latent energy storage; Phase change material; Multiple melting temperatures; Multi-objective optimization; Climate-representative locations

向作者/读者索取更多资源

Technologies based on phase change materials (PCMs) offer promising solutions for reducing energy consumption and greenhouse gas emissions in buildings. This study proposes an optimization-based method to design passive latent energy storage in buildings using PCMs with different melting temperatures. The performance of optimized designs incorporating multiple PCMs with varying melting temperatures is compared to baseline models, and the results show that using multiple PCMs is preferred regardless of the climate zone analyzed. The highest energy savings of 11.7% are achieved in the Cold climate zone (5A), while the lowest savings of 2.3% are obtained in the Very hot climate zone (1B).
Technologies based on phase change materials (PCMs) are promising solutions to reduce energy consumption in buildings and related greenhouse gas emissions. However, the performance of passive PCMs in buildings is highly dependent on the melting temperatures employed, as well as the climate where the building is located. Therefore, the present contribution describes an optimization-based method to design passive latent energy storage in buildings by using PCMs with different melting temperatures. To achieve this goal, a multi -objective genetic algorithm is coupled with the building energy models developed in EnergyPlus to find the best trade-off between annual heating and cooling loads. A small office is chosen as a case study to evaluate the energy performance of the buildings incorporating the proposed PCM approach. Three different PCM layers are added to the ceilings and the external and internal walls of the building, and their parametric models are developed in EnergyPlus to optimize the melting temperature and thickness of each PCM layer simultaneously. Moreover, a method to select climate-representative locations according to the ASHRAE 169-2020 climate classification and within the WMO Region VI (Europe) is proposed and applied, resulting in eight well-representative locations. An optimization-based design is carried out for each selected location and the performances of the optimized building designs are systematically compared to the ones of the baseline models. The optimization results achieved show that regardless of the climate zone analyzed, using several PCMs with different melting temperatures instead of a single one, is preferred. Moreover, the best performance of PCMs is attained in climate zones where both the heating and cooling loads are present. Thus, the highest saving regarding the annual total loads of 11.7% is achieved in zone 5A (Cold), while the lowest one of 2.3% is obtained in zone 1B (Very hot).

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据