4.2 Article

FAM3A Protects HT22 Cells Against Hydrogen Peroxide-Induced Oxidative Stress Through Activation of PI3K/Akt but not MEK/ERK Pathway

期刊

CELLULAR PHYSIOLOGY AND BIOCHEMISTRY
卷 37, 期 4, 页码 1431-1441

出版社

KARGER
DOI: 10.1159/000438512

关键词

FAM3A; Oxidative stress; Mitochondria; Akt; ERK

资金

  1. Science and Technology Project Foundation of Shaanxi [2014K11-03-09-08]

向作者/读者索取更多资源

Background/Aims: Oxidative stress-induced cell damage is involved in many neurological diseases. FAM3A is the first member of family with sequence similarity 3 (FAM3) gene family and its biological function remains largely unknown. Methods: This study aimed to determine its role in hydrogen peroxide (H2O2) induced injury in neuronal HT22 cells. The protective effects were measured by cell viability, lactate dehydrogenase (LDH) release and apoptosis, and oxidative stress was assayed by reactive oxygen species (ROS) generation, ATP synthesis and lipid peroxidation. By using selective inhibitors, the involvement of PI3K/Akt and MEK/ERK pathways were also investigated. Results: The results of fluorescence staining revealed that H2O2 significantly decreased the expression of FAM3A protein, which was shown to be subcellularly located in mitochondria. Up-regulation of FAM3A by lentivirus transfection markedly increased cell viability and decreased LDH release after H2O2 treatment. The antiapoptotic activity of FAM3A was demonstrated by the reduced mitochondrial cytochrome c release, decreased activation of caspase-3 and the results of flow cytometry. Overexpression of FAM3A attenuated intracellular ROS generation and loss of ATP production induced by H2O2, and subsequently inhibited lipid peroxidation. In addition, overexpression of FAM3A significantly increased the activation of Akt and ERK in H2O2 injured HT22 cells. By using Akt and ERK specific inhibitors, we found that inhibition of PI3K/Akt, but not MEK/ERK pathway, partially prevented FAM3A-induced protection against H2O2. Conclusion: These results suggest that FAM3A has protective effects against H2O2-induced oxidative stress by reducing ROS accumulation and apoptosis, and these protective effects are dependent on the activation of PI3K/Akt pathway. (C) 2015 The Author(s) Published by S. Karger AG, Basel

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.2
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据