4.5 Article

Task scheduling for heterogeneous computing systems

期刊

JOURNAL OF SUPERCOMPUTING
卷 73, 期 6, 页码 2313-2338

出版社

SPRINGER
DOI: 10.1007/s11227-016-1917-2

关键词

Directed acyclic graphs; Heterogeneous systems; List scheduling; Task ranking; Task scheduling

向作者/读者索取更多资源

Efficient scheduling of tasks in heterogeneous computing systems is of primary importance for high-performance execution of programs. The programs are to be considered as multiple sequences of tasks that are presented as directed acyclic graphs (DAG). Each task has its own execution timeline that incorporates into multiple processors. Moreover, each edge on the graph represents constraints between the sequenced tasks. In this paper, we propose a new list-scheduling algorithm that schedules the tasks represented in the DAG to the processor that best minimizes the total execution time by taking into consideration the restriction of crossover between processors. This objective will be achieved in two major phases: (a) computing priorities of each task that will be executed, and (b) selecting the processor that will handle each task. The first phase, priorities computation, focuses on finding the best execution sequence that minimizes the makespan of the overall execution. In list-scheduling algorithm, the quality of the solution is very sensitive to the priority assigned to the tasks. Therefore, in this paper, we include an enhanced calculation of weight that is used in the ranking equation for determining the priority of tasks. The second phase, processor selection, primarily focuses on allocating a processor that is a best fit for each task to be executed. In this paper, we enhance the processor selection by introducing a randomized decision mechanism based on a threshold which decides whether the task be assigned to the processor with the lowest execution time or to the processor that produces the lowest finish time. This mechanism considers a balanced combination of the local and global optimal results to explore the search space efficiently to optimize the over- all makespan. The proposed algorithm is evaluated on different randomly generated DAGs, and results are compared with the well-known existing approaches to show the effectiveness of the proposed algorithm in reducing the makespan of execution. The experiment's results show improvement in the makespan that reaches up to 6-7%.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据