4.7 Article

The non-canonical Wnt pathway negatively regulates dendritic cell differentiation by inhibiting the expansion of Flt3+ lymphocyte-primed multipotent precursors

期刊

CELLULAR & MOLECULAR IMMUNOLOGY
卷 13, 期 5, 页码 593-604

出版社

NATURE PUBLISHING GROUP
DOI: 10.1038/cmi.2015.39

关键词

aging; dendritic cell; Wnt5a

资金

  1. Key Project Grant from the National Natural Science Foundation of China [31330027]
  2. Tsinghua University Initiative Scientific Research Program Research Fund [20111080963]
  3. Tsinghua-Peking Center for Life Sciences

向作者/读者索取更多资源

The differentiation of dendritic cells (DC) is affected by the aging process. However, the molecular mechanisms responsible for the alteration of DC development in aged mice have not been clarified. Recently, Wnt5a was reported to be an important aging-related molecule in hematopoietic systems. Here, we hypothesized that the increased expression of Wnt5a in aged hematopoietic precursors led to deficient DC differentiation in aged mice. The percentages and cell numbers of plasmacytoid DC (pDC) and CD172a(-)2CD8 alpha(+) conventional DC (cDC) were decreased in aged mice compared to young mice. Further analysis indicated that the hematopoietic precursors that gave rise to DC, including Flt3(+) lymphoid-primed multipotent precursors (LMPP), common lymphoid progenitors (CLP) and common DC precursors (CDP), were all decreased in the bone marrow of aged mice. Overexpression of Wnt5a in hematopoietic precursors strongly affected the differentiation of cDC and pDC in vivo. Treatment of hematopoietic stem cells (HSC) with Wnt5a led to a significant decrease in the differentiation of the LMPP, CLP and CDP populations that was similar to the decrease observed in the bone marrow (BM) HSC of aged mice. Molecular studies demonstrated that Wnt5a negatively regulated the expression of an array of genes important for DC differentiation, including Flt3, Gfi-1, Ikaros, Bcl11a, and IL-7R, by activating the Wnt5a-Cdc42 pathway. Finally, we rejuvenated DC differentiation from aged precursors by blocking the non-canonical Wnt pathway. Our study identified the key roles of the non-canonical Wnt pathway in DC differentiation and DC aging.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据