4.6 Review

Machine learning and deep learning in phononic crystals and metamaterials-A review

期刊

MATERIALS TODAY COMMUNICATIONS
卷 33, 期 -, 页码 -

出版社

ELSEVIER
DOI: 10.1016/j.mtcomm.2022.104606

关键词

Acoustic metamaterial; Deep learning; Machine learning; Mechanical metamaterials; Phononic crystal

资金

  1. Irish Research Council -Enterprise Partnership Scheme Postdoctoral Fellowship Scheme
  2. [211705.16976-EPSPD/2021/108]

向作者/读者索取更多资源

The increasing application of machine learning and deep learning techniques in the fields of acoustics and mechanics provides new insights for the design and optimization of artificial materials and structures. The article evaluates the latest developments, discusses network architectures and working principles, and explores future prospects.
Machine learning (ML), as a component of artificial intelligence, encourages structural design exploration which leads to new technological advancements. By developing and generating data-driven methodologies that supplement conventional physics and formula-based approaches, deep learning (DL), a subset of machine learning offers an efficient way to understand and harness artificial materials and structures. Recently, acoustic and mechanics communities have observed a surge of research interest in implementing machine learning and deep learning methods in the design and optimization of artificial materials. In this review we evaluate the recent developments and present a state-of-the-art literature survey in machine learning and deep learning based phononic crystals and metamaterial designs by giving historical context, discussing network architectures and working principles. We also explain the application of these network architectures adopted for design and optimization of artificial structures. Since this multidisciplinary research field is evolving, a summary of the future prospects is also covered. This review article serves to update the acoustics, mechanics, physics, material science and deep learning communities about the recent developments in this newly emerging research direction

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据