4.7 Article

Exercise-induced specialized proresolving mediators stimulate AMPK phosphorylation to promote mitochondrial respiration in macrophages

期刊

MOLECULAR METABOLISM
卷 66, 期 -, 页码 -

出版社

ELSEVIER
DOI: 10.1016/j.molmet.2022.101637

关键词

Exercise; Macrophage; Inflammation; Mitochondria; Lipid mediators

资金

  1. National Institutes of Health [GM127607, GM127495, HL130174, ES028268, HL147844]
  2. NRSA Ruth L. Kirschstein F31 Fellowship [DK131920]

向作者/读者索取更多资源

This study found that physical activity could enhance the production of proresolving lipid mediators and increase macrophage mitochondrial metabolism, which play a role in anti-inflammatory effects and reducing the risk of cardiovascular diseases.
Objective: Physical activity has been shown to reduce the risk of CVD mortality in large-cohort longitudinal studies; however, the mechanisms underpinning the beneficial effects of exercise remain incompletely understood. Emerging data suggest that the risk reducing effect of exercise extends beyond changes in traditional CVD risk factors alone and involves alterations in immunity and reductions in inflammatory mediator production. Our study aimed to determine whether exercise-enhanced production of proresolving lipid mediators contribute to alterations in macrophage intermediary metabolism, which may contribute to the anti-inflammatory effects of exercise.Methods: Changes in lipid mediators and macrophage metabolism were assessed in C57Bl/6 mice following 4 weeks of voluntary exercise training. To investigate whether exercise-stimulated upregulation of specialized proresolving lipid mediators (SPMs) was sufficient to enhance mitochondrial respiration, both macrophages from control mice and human donors were incubated in vitro with SPMs and mitochondrial res-piratory parameters were measured using extracellular flux analysis. Compound-C, an ATP-competitive inhibitor of AMPK kinase activity, was used to investigate the role of AMPK activity in SPM-induced mitochondrial metabolism. To assess the in vivo contribution of 5-lipoxygenase in AMPK activation and exercise-induced mitochondrial metabolism in macrophages, Alox5-/- mice were also subjected to exercise training.Results: Four weeks of exercise training enhanced proresolving lipid mediator production, while also stimulating the catabolism of inflammatory lipid mediators (e.g., leukotrienes and prostaglandins). This shift in lipid mediator balance following exercise was associated with increased macrophage mitochondrial metabolism. We also find that treating human and murine macrophages in vitro with proresolving lipid mediators enhances mitochondrial respiratory parameters. The proresolving lipid mediators RvD1, RvE1, and MaR1, but not RvD2, stimulated mitochondrial respiration through an AMPK-dependent signaling mechanism. Additionally, in a subset of macrophages, exercise-induced mitochondrial activity in vivo was dependent upon 5-lipoxygenase activity.Conclusion: Collectively, these results suggest that exercise stimulates proresolving lipid mediator biosynthesis and mitochondrial metabolism in macrophages via AMPK, which might contribute to the anti-inflammatory and CVD risk reducing effect of exercise.(c) 2022 The Author(s). Published by Elsevier GmbH. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据