4.6 Article

Dynein prevents erroneous kinetochore-microtubule attachments in mitosis

期刊

CELL CYCLE
卷 14, 期 21, 页码 3356-3361

出版社

TAYLOR & FRANCIS INC
DOI: 10.1080/15384101.2015.1089369

关键词

Aurora A; Dynein; error correction; kinetochore; spindle pole

资金

  1. PRECISE grant from European Research Council
  2. FLAD Life Science
  3. YICA

向作者/读者索取更多资源

Equal distribution of the genetic material during cell division relies on efficient congression of chromosomes to the metaphase plate. Prior to their alignment, the Dynein motor recruited to kinetochores transports a fraction of laterally-attached chromosomes along microtubules toward the spindle poles. By doing that, Dynein not only contributes to chromosome movements, but also prevents premature stabilization of end-on kinetochore-microtubule attachments. This is achieved by 2 parallel mechanisms: 1) Dynein-mediated poleward movement of chromosomes counteracts opposite polar-ejection forces (PEFs) on chromosome arms by the microtubule plus-end-directed motors chromokinesins. Otherwise, they could stabilize erroneous syntelic kinetochore-microtubule attachments and lead to the random ejection of chromosomes away from the spindle poles; and 2) By transporting chromosomes to the spindle poles, Dynein brings the former to the zone of highest Aurora A kinase activity, further destabilizing kinetochore-microtubule attachments. Thus, Dynein plays an important role in keeping chromosome segregation error-free by preventing premature stabilization of kinetochore-microtubule attachments near the spindle poles.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据