4.6 Article

Monkfish (Lophius litulon) Peptides Ameliorate High-Fat-Diet-Induced Nephrotoxicity by Reducing Oxidative Stress and Inflammation via Regulation of Intestinal Flora

期刊

MOLECULES
卷 28, 期 1, 页码 -

出版社

MDPI
DOI: 10.3390/molecules28010245

关键词

monkfish peptides; kidney; high-fat diet; nuclear factor erythroid 2-related factor 2; nuclear factor-kappa B; intestinal flora

向作者/读者索取更多资源

This study investigated the protective effect of monkfish peptides on renal injury and their potential role in regulating gut microbiota. The results showed that monkfish peptides significantly improved antioxidant activity, reduced inflammatory cytokine levels, and improved intestinal dysbiosis, alleviating high-fat diet-induced renal lipotoxicity. These findings suggest that monkfish peptides are potential compounds for alleviating renal lipotoxicity.
Background: Renal damage and intestinal flora imbalance due to lipotoxicity are particularly significant in terms of oxidative stress and inflammation, which can be alleviated with bioactive peptides. The monkfish (Lophius litulon) is rich in proteins, which can be used as a source of quality bioactive peptides. This study aimed to examine the protective effect of monkfish peptides on renal injury and their potential role in regulating gut microbiota. Methods: Monkfish meat was hydrolyzed using neutral protease and filtered, and the component with the highest elimination rate of 2,2-diphenyl-1-picrylhydrazyl was named lophius litulon peptides (LPs). Lipid nephrotoxicity was induced via high-fat diet (HFD) feeding for 8 weeks and then treated with LPs. Oxidative stress, inflammatory factors, and intestinal flora were evaluated. Results: LP (200 mg/kg) therapy reduced serum creatinine, uric acid, and blood urea nitrogen levels by 49.5%, 31.6%, and 31.6%, respectively. Renal vesicles and tubules were considerably improved with this treatment. Moreover, the activities of superoxide dismutase, glutathione peroxidase, and total antioxidant capacity increased significantly by 198.7%, 167.9%, 61.5%, and 89.4%, respectively. LPs attenuated the upregulation of HFD-induced Toll-like receptor 4 and phospho-nuclear factor-kappa B and increased the protein levels of heme oxygenase 1, nicotinamide quinone oxidoreductase 1, and nuclear factor erythroid 2-related factor 2. The dysbiosis of intestinal microbiota improved after LP treatment. Conclusions: LPs significantly improve antioxidant activity, reduce inflammatory cytokine levels, and regulate intestinal dysbiosis. Thus, LPs are potential compounds that can alleviate HFD-induced renal lipotoxicity.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据