4.7 Article

Haplotype-phased and chromosome-level genome assembly of Puccinia polysora, a giga-scale fungal pathogen causing southern corn rust

期刊

MOLECULAR ECOLOGY RESOURCES
卷 23, 期 3, 页码 601-620

出版社

WILEY
DOI: 10.1111/1755-0998.13739

关键词

AvrRppC; de novo genome assembly; phasing; population genomics; rust fungi

向作者/读者索取更多资源

This study presents a pipeline using HiFi reads and Hi-C data to assemble the genome of the fungal pathogen Puccinia polysora f.sp. zeae, achieving haplotype-phased and chromosome-level assembly. The high-quality assembly provides valuable genomic resources for future studies on disease management and the evolution of P. polysora.
Rust fungi are characterized by large genomes with high repeat content and have two haploid nuclei in most life stages, which makes achieving high-quality genome assemblies challenging. Here, we described a pipeline using HiFi reads and Hi-C data to assemble a gigabase-sized fungal pathogen, Puccinia polysora f.sp. zeae, to haplotype-phased and chromosome-scale. The final assembled genome is 1.71 Gbp, with similar to 850 Mbp and 18 chromosomes in each haplotype, being currently one of the two giga-scale fungi assembled to chromosome level. Transcript-based annotation identified 47,512 genes for the dikaryotic genome with a similar number for each haplotype. A high level of interhaplotype variation was found with 10% haplotype-specific BUSCO genes, 5.8 SNPs/kbp, and structural variation accounting for 3% of the genome size. The P. polysora genome displayed over 85% repeat contents, with genome-size expansion and copy number increasing of species-specific orthogroups. Interestingly, these features did not affect overall synteny with other Puccinia species having smaller genomes. Fine-time-point transcriptomics revealed seven clusters of coexpressed secreted proteins that are conserved between two haplotypes. The fact that candidate effectors interspersed with all genes indicated the absence of a two-speed genome evolution in P. polysora. Genome resequencing of 79 additional isolates revealed a clonal population structure of P. polysora in China with low geographic differentiation. Nevertheless, a minor population differentiated from the major population by having mutations on secreted proteins including AvrRppC, indicating the ongoing virulence to evade recognition by RppC, a major resistance gene in Chinese corn cultivars. The high-quality assembly provides valuable genomic resources for future studies on disease management and the evolution of P. polysora.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据