4.2 Article

Macrophage colony-stimulating factor potentially induces recruitment and maturation of macrophages in recurrent pituitary neuroendocrine tumors

期刊

MICROBIOLOGY AND IMMUNOLOGY
卷 67, 期 2, 页码 90-98

出版社

WILEY
DOI: 10.1111/1348-0421.13041

关键词

adenoma; M-CSF; PitNET; pituitary adenoma; tumor-associated macrophage

向作者/读者索取更多资源

This study investigated the role of tumor-associated macrophages (TAMs) in recurrent pituitary neuroendocrine tumors (PitNETs). The study found that the density of TAMs increased in recurrent PitNETs and that cell-to-cell communication between TAMs and tumor cells promoted tumor growth.
Although pituitary neuroendocrine tumors (PitNETs) are usually benign, some are highly invasive and recurrent. Recurrent PitNETs are often treatment-resistant and there is currently no effective evidence-based treatment. Tumor-associated macrophages (TAMs) promote tumor growth in many cancers, but the effect of TAMs on PitNETs remains unclear. This study investigated the role of TAMs in the incidence of recurrent PitNETs. Immunohistochemical analysis revealed that the densities of CD163- and CD204-positive TAMs tended to increase in recurrent PitNETs. Compared with TAMs in primary lesions, those in recurrent lesions were enlarged. To clarify the cell-cell interactions between TAMs and PitNETs, in vitro experiments were performed using a mouse PitNET cell line AtT20 and the mouse macrophage cell line J774. Several cytokines related to macrophage chemotaxis and differentiation, such as M-CSF, were elevated significantly by stimulation with macrophage conditioned medium. When M-CSF immunohistochemistry analysis was performed using human PitNET samples, M-CSF expression increased significantly in recurrent lesions compared with primary lesions. Although no M-CSF receptor (M-CSFR) expression was observed in tumor cells of primary and recurrent PitNETs, flow cytometric analysis revealed that the mouse PitNET cell line expressed M-CSFR. Cellular proliferation in mouse PitNETs was inhibited by high concentrations of M-CSFR inhibitors, suggesting that cell-to-cell communication between PitNETs and macrophages induces M-CSF expression, which in turn enhances TAM chemotaxis and maturation in the tumor microenvironment. Blocking the M-CSFR signaling pathway might be a novel therapeutic adjuvant in treating recurrent PitNETs.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.2
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据