4.7 Article

On the assessment of the thermal performance of microchannel heat sink with nanofluid

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.ijheatmasstransfer.2022.123572

关键词

Microchannel heat sink; Nanofluid; Experimental; Thermal resistance; Uniformity index

向作者/读者索取更多资源

By studying the thermal performance evaluation of microchannel heat sinks with nanofluids, it is found that the use of nanofluids can reduce the thermal resistance of the heat sink, increase the uniformity index of the heating surface, and enhance the mean convection heat transfer coefficient.
By increasing demands for high thermal performance and energy efficiency, attentions to microchannel heat sinks (MCHSs) as the suitable method for heat flux dissipation from thermal systems have increased significantly. Microchannel heat sinks can be widely employed in electronic devices for higher heat re-moval rate and to provide best performance and durability for electronic systems. The critical issue as-sociated with MCHSs is their ability for integration of effective thermal performance. In this work, on the assessment of the thermal performance of microchannel heat sink with nanofluid is experimentally examined. The heat removal performance of the pure water and nanofluid through the MCHS is studied. Different im portant parameters, such as dimensionless wall temperature, pressure drop, mean convection heat transfer coefficient, thermal resistance, and uniformity index, are investigated. The results indicated that the maximum suppression value of the thermal resistance attained by employing the nanofluid is 12.61%. The uniformity index of the heating surface is increased as the Re number increases. More sup-pression in the wall temperature can be observed as the volume concentration of nanoparticles is in-creased. By increasing the total flow rate and using the nanofluid, the hot spots on the heating surface are suppressed. Finally, the maximum gain value of the nanofluid for the mean convection heat transfer coefficient is up to 14.43%.(c) 2022 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据