4.4 Article

Estimating termite population size using spatial statistics for termite tunnel patterns

期刊

ECOLOGICAL COMPLEXITY
卷 52, 期 -, 页码 -

出版社

ELSEVIER
DOI: 10.1016/j.ecocom.2022.101025

关键词

Termite tunnel pattern; Fractal dimension; Local density; Join count statistic; Population size estimation; Agent -based model

类别

向作者/读者索取更多资源

Subterranean termites build tunnels for foraging and food transportation, which can cause damage to wooden structures. This study proposed a method using spatial statistic indices to estimate termite population size in tunnel patterns. The method needs improvement for field application.
Subterranean termites build underground tunnels for foraging. The obtained food is transported to the nest through these tunnels, and consumed to maintain the termite colony. In this process, termites can cause damage to wooden structures. To develop effective control strategies to reduce termite damage, it is important to know the sizes of the termite populations in the tunnels. In this study, we proposed a method for estimating the termite population size using the spatial statistic indices including fractal dimension (FD), local density (LD), and join count statistic (JCS) for the tunnel patterns. However, the method needs further improvement to be applied in field conditions. For the method, we generated 8,000 tunnel pattern images (1,000 images for each N) using an agent-based model based on experimental data. Here, N (= 3, 4, ..., 10) represents the number of termites participating in tunnel construction in the simulation. Subsequently, we calculated the FD, LD and JCS values of the tunnel pattern and trained and verified the k-nearest neighbors (KNN) algorithm, using 5,600 and 2,400 images, respectively. The population size (N) was estimated based on the FD, LD and JCS using the KNN algo-rithm. The estimated accuracy for all N was 60% to 97% in the range of k = 1 to 300. If the model for tunnel pattern generation includes heterogeneous environmental conditions, the proposed method could be used to effectively estimate the actual number of termite populations. Finally, we briefly discuss the challenges affecting our model, and how these could be overcome.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据