4.7 Article Proceedings Paper

Reusable Mg-Al hydrotalcites for the catalytic synthesis of diglycerol dicarbonate from diglycerol and dimethyl carbonate

期刊

CATALYSIS TODAY
卷 257, 期 -, 页码 274-280

出版社

ELSEVIER
DOI: 10.1016/j.cattod.2014.06.035

关键词

Diglycerol; Diglycerol dicarbonate; Hydrotalcites; Non-isocyanate polyurethanes

资金

  1. Biobased Performance Materials research programme [BPM-013]
  2. Dutch Ministry of Economic Affairs

向作者/读者索取更多资源

Diglycerol dicarbonate, which has been highlighted as a potential monomer for the production of non-isocyanate polyurethanes, has been synthesised using as-synthesised hydrotalcites of varying magnesium-to-aluminium ratio as catalyst materials. The hydrotalcite materials were aged for two different times, influencing their crystallite size. The catalytic carbonylation of diglycerol into diglycerol dicarbonate with dimethyl carbonate as CO source and solvent, ran to full conversion within 6 h, with complete selectivity, operating at relatively mild temperatures. Diglycerol monocarbonate was observed as a reaction intermediate in this conversion process. The increased basicity observed with increasing Mg/Al ratio led to higher activities. The catalysts can be easily recovered and re-used without any further activation treatment, whilst still displaying their high activity. (C) 2014 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

Article Chemistry, Physical

Structure-Activity Relationships in Highly Active Platinum-Tin MFI-type Zeolite Catalysts for Propane Dehydrogenation

Ines Lezcano-Gonzalez, Peixi Cong, Emma Campbell, Monik Panchal, Miren Agote-Aran, Veronica Celorrio, Qian He, Ramon Oord, Bert M. Weckhuysen, Andrew M. Beale

Summary: Pt/Sn-containing MFI zeolites prepared by one-pot hydrothermal methods exhibit high catalytic activity and selectivity for propane dehydrogenation, but prolonged use leads to deactivation due to increased Pt Sn alloying and carbon build-up.

CHEMCATCHEM (2022)

Article Chemistry, Physical

Elucidating the Sectioning Fragmentation Mechanism in Silica-Supported Olefin Polymerization Catalysts with Laboratory-Based X-Ray and Electron Microscopy

Maximilian J. Werny, Dominik Mueller, Coen Hendriksen, Robert Chan, Nicolaas H. Friederichs, Christian Fella, Florian Meirer, Bert M. Weckhuysen

Summary: Strict control over the morphology of growing polymer particles is crucial in catalytic olefin polymerization processes. This study investigates the factors that influence the degree of sectioning in silica-supported olefin polymerization catalysts. The accessibility of the catalyst particle interior, initial polymerization rate, and support structure were found to be important factors in determining the occurrence of sectioning.

CHEMCATCHEM (2022)

Correction Chemistry, Multidisciplinary

Propane to olefins tandem catalysis: a selective route towards light olefins production (vol 50, pg 11503, 2021)

Matteo Monai, Marianna Gambino, Sippakorn Wannakao, Bert M. Weckhuysen

CHEMICAL SOCIETY REVIEWS (2023)

Article Multidisciplinary Sciences

Structure sensitivity in gas sorption and conversion on metal-organic frameworks

Guusje Delen, Matteo Monai, Katarina Stanciakova, Bettina Baumgartner, Florian Meirer, Bert M. Weckhuysen

Summary: Researchers have discovered that the sorption and conversion of gaseous molecules on the surface of functional materials preferentially occur on specific undercoordinated high-index surface sites. By combining in situ PiFM with DFT calculations, they have studied the site-specific sorption and conversion of formaldehyde on faceted ZIF-8 microcrystals and observed preferential adsorption on high-index planes. They have also visualized unsaturated nanodomains and found structure sensitive conversion mediated by Lewis acidity on defective ZIF-8 crystals.

NATURE COMMUNICATIONS (2023)

Editorial Material Chemistry, Physical

New Editor-in-Chief for Catalysis Science & Technology

Javier Perez-Ramirez, Bert M. Weckhuysen, Maria E. Southall

CATALYSIS SCIENCE & TECHNOLOGY (2023)

Article Chemistry, Multidisciplinary

The Growth of Metal-Organic Framework Films on Calcium Fluoride and Their Interaction With Reactive Molecules

Laurens D. B. Mandemaker, Christia Jabbour, Nikolaos Nikolopoulos, Joren M. Dorresteijn, Miguel Rivera-Torrente, Bert M. Weckhuysen

Summary: The growth mechanisms and molecular phenomena of UiO-67, UU-1, and ZIF-8 metal-organic framework (MOF) films on transparent substrates are studied using transmission-based characterization. UiO-67 follows a Volmer-Weber growth mechanism with assistance from solution-grown seeds. UU-1 exhibits fiber-like morphology and inter-fiber macroporosity, while ZIF-8 shows a similar Volmer-Weber growth mode. CO probe molecule adsorption FT-IR spectroscopy reveals the effects of methanol exposure, with UiO-67 becoming inaccessible to CO, UU-1 undergoing a topotactic transformation, and ZIF-8 remaining stable with impurity removal. This approach opens new possibilities for studying other film materials using transmission-based spectroscopy.

ADVANCED MATERIALS INTERFACES (2023)

Article Green & Sustainable Science & Technology

Techno-economic competitiveness of renewable fuel alternatives in the marine sector

Agneev Mukherjee, Pieter Bruijnincx, Martin Junginger

Summary: The maritime sector accounts for a significant amount of global greenhouse gas emissions and is facing pressure to decarbonise. Renewable fuels show potential, but their high costs are a barrier. Carbon Capture and Storage (CCS) can enhance marine fuel decarbonisation, but adds to the cost. This study compares the costs of four renewable carbon fuels and considers the impact of carbon taxation. The results show that without carbon taxation, renewable fuels are not competitive, and methanol and DME produced using CO2 capture are the most cost-effective options.

RENEWABLE & SUSTAINABLE ENERGY REVIEWS (2023)

Article Chemistry, Multidisciplinary

Tuning the Properties of Biobased PU Coatings via Selective Lignin Fractionation and Partial Depolymerization

Arjan T. Smit, Emanuela Bellinetto, Thomas Dezaire, Oussama Boumezgane, Luke A. Riddell, Stefano Turri, Michiel Hoek, Pieter C. A. Bruijnincx, Gianmarco Griffini

Summary: This study presents a novel strategy for tailoring lignin molar mass and hydroxyl group reactivity in polyurethane (PU) coatings. By fractionation and partial depolymerization, lignin fractions with specific molar mass ranges were obtained, allowing the production of coatings with different properties. The study also shows that lignin depolymerization can significantly improve lignin reactivity and enhance coating flexibility.

ACS SUSTAINABLE CHEMISTRY & ENGINEERING (2023)

Article Chemistry, Multidisciplinary

Reductive Partial Depolymerization of Acetone Organosolv Lignin to Tailor Lignin Molar Mass, Dispersity, and Reactivity for Polymer Applications

Arjan T. Smit, Thomas Dezaire, Luke A. Riddell, Pieter C. A. Bruijnincx

Summary: Lignin partial depolymerization by reduction (PDR) is a strategy to modify the molar mass and heterogeneity of technical lignin, and increase its reactivity in polymer applications. The process aims to break the remaining lignin beta-O-4 linkages, reducing the molar mass of large lignin fragments. The PDR process provides control over key lignin characteristics, allowing for tailored biobased polymer properties.

ACS SUSTAINABLE CHEMISTRY & ENGINEERING (2023)

Article Chemistry, Physical

Elemental zoning enhances mass transport in zeolite catalysts for methanol to hydrocarbons

Thuy T. Le, Wei Qin, Ankur Agarwal, Nikolaos Nikolopoulos, Donglong Fu, Matthew D. Patton, Conan Weiland, Simon R. Bare, Jeremy C. Palmer, Bert M. Weckhuysen, Jeffrey D. Rimer

Summary: This study reveals that the presence of a catalytically inactive siliceous exterior rim on ZSM-5 particles can significantly reduce diffusion limitations, leading to an improved catalyst lifetime. The synthesis of Si-zoned ZSM-5 catalysts improves the diffusion properties of the catalyst. Operando ultraviolet-visible light diffuse reflectance spectroscopy shows a substantial reduction in external coking among Si-zoned samples. Molecular dynamics simulations demonstrate that there are significantly reduced transport limitations in the zoned regions, which contributes to the improved catalyst activity of Si-zoned zeolites compared to ZSM-5 with a homogeneous acid-site distribution.

NATURE CATALYSIS (2023)

Article Chemistry, Multidisciplinary

Molecular Accessibility and Diffusion of Resorufin in Zeolite Crystals

J. J. Erik Maris, Luke A. Parker, Katarina Stanciakova, Nikolaos Nikolopoulos, Koen M. H. Berendsen, Alfons van Blaaderen, Florian Meirer, Freddy T. Rabouw, Bert M. Weckhuysen

Summary: In this study, we used confocal laser scanning microscopy to investigate the molecular accessibility and diffusion of a small fluorescent dye molecule, resorufin, in the hierarchical, anisotropic pore structure of large zeolite-beta crystals. Our findings revealed that protonated resorufin exhibits strong fluorescence when confined within zeolite micropores, enabling fluorescence microimaging experiments. Through our experiments, we were able to characterize the pore space and quantify the diffusion coefficient in the straight pores of zeolite-beta. We also observed that diffusion is impeded when crossing the boundaries between zeolite subunits.

CHEMISTRY-A EUROPEAN JOURNAL (2023)

Article Chemistry, Multidisciplinary

Elucidating the Structure and Composition of Individual Bimetallic Nanoparticles in Supported Catalysts by Atom Probe Tomography

Florian Zand, Suzanne J. T. Hangx, Christopher J. Spiers, Peter J. van den Brink, James Burns, Matthew G. Boebinger, Jonathan D. Poplawsky, Matteo Monai, Bert M. Weckhuysen

Summary: Understanding and controlling the structure and composition of nanoparticles in supported metal catalysts are crucial for improving chemical processes. Atom probe tomography (APT) is a powerful tool for three-dimensional chemical imaging of materials with nanometer resolution. However, APT has not been used for mesoporous oxide-supported metal catalysts due to sample fracture. In this study, we developed a high-pressure resin impregnation strategy to overcome this issue and successfully applied APT to high-porous supported Pd-Ni catalyst materials active in CO2 hydrogenation. Our results demonstrate the capability of APT to quantitatively assess the size, composition, and metal distribution of nanoparticles in industrial catalysts.

JOURNAL OF THE AMERICAN CHEMICAL SOCIETY (2023)

Article Chemistry, Multidisciplinary

Expanding lignin thermal property space by fractionation and covalent modification

Luke A. Riddell, Floris J. P. A. Enthoven, Jean-Pierre B. Lindner, Florian Meirer, Pieter C. A. Bruijnincx

Summary: In order to fully utilize the potential of kraft lignin in material applications, it is important to have precise control over physicochemical parameters that determine the properties of lignin-derived materials. This study demonstrates that fractionation combined with systematic modification offers a powerful strategy to expand and tailor the properties of lignin. The glass transition temperature (Tg) of kraft lignin can be tuned over a significant range, allowing for precise control over this key property.

GREEN CHEMISTRY (2023)

Article Chemistry, Multidisciplinary

Efficient synthesis of fully renewable, furfural-derived building blocks via formal Diels-Alder cycloaddition of atypical addends

Razvan C. Cioc, Eva Harsevoort, Martin Lutz, Pieter C. A. Bruijnincx

Summary: Diels-Alder cycloaddition is an important transformation in chemistry, especially in the synthesis of versatile bio-based platform molecules. However, the reactivity of common furanic compounds presents a major challenge for industrial applications. In this study, we report a highly efficient intramolecular Diels-Alder reaction between allyl acetals of different furfurals, resulting in the formation of oxanorbornene derivatives with high chemo-, regio-, and stereoselectivity. These derivatives can be easily diversified into valuable products, offering potential for scalable production of renewable chemical building blocks from inexpensive bioderived platform molecules.

GREEN CHEMISTRY (2023)

Article Chemistry, Multidisciplinary

Probing nearby molecular vibrations with lanthanide-doped nanocrystals

Mark J. J. Mangnus, Vincent R. M. Benning, Bettina Baumgartner, P. Tim Prins, Thomas P. van Swieten, Ayla J. H. Dekker, Alfons van Blaaderen, Bert M. Weckhuysen, Andries Meijerink, Freddy T. Rabouw

Summary: This study investigates the influence of solvent and gas environments on the photoluminescence (PL) properties of lanthanide-doped nanocrystals, and explains the changes in PL spectrum and excited-state lifetimes using energy transfer mediated by molecular vibrations. EVET-mediated quenching holds promise for probing the local chemical environment of nanocrystals dispersed in a liquid or exposed to gaseous molecules.

NANOSCALE (2023)

Article Chemistry, Applied

Operando characterisation of the products of Fischer-Tropsch synthesis in a fixed-bed reactor studied by magnetic resonance

Qingyuan Zheng, Jack H. Williams, Scott Elgersma, Mick D. Mantle, Andrew J. Sederman, G. Leendert Bezemer, Constant M. Guedon, Lynn F. Gladden

Summary: In this study, a pilot-scale fixed-bed reactor compatible with NMR/MRI was developed for Fischer-Tropsch synthesis. Multiple magnetic resonance techniques were applied to quantitatively characterize different product species within catalyst pellets, providing valuable information for catalyst and reactor optimization.

CATALYSIS TODAY (2024)

Article Chemistry, Applied

Ambient pressure operando catalytic characterization by combining PM-IRRAS with planar laser-induced fluorescence and surface optical reflectance imaging

Lisa Ramisch, Sebastian Pfaff, Sabrina M. Gericke, Edvin Lundgren, Johan Zetterberg

Summary: We present a combination of optical operando techniques that allow simultaneous measurement of adsorbed species on catalyst surfaces, monitoring of surface oxide formation, and imaging of the gas phase above the catalyst surface. The experimental setup was validated by studying CO oxidation on Pd(100) at different pressures, revealing the effects of pressure on the heterogeneous catalytic reaction.

CATALYSIS TODAY (2024)

Article Chemistry, Applied

Insights into the influence of feed impurities on catalytic performance in the solvent-free dimerization of renewable levulinic acid

Marta Paniagua, Gabriel Morales, Juan A. Melero, Daniel Garcia-Salgado

Summary: The influence of common impurities in levulinic acid on the catalytic performance of different acid catalysts for bio-jet fuel production was studied. It was found that furfural had the greatest detrimental effect on catalyst performance, while propyl-sulfonic acid-modified SBA-15 and sulfonic acid resin Amberlyst-70 showed good regeneration ability.

CATALYSIS TODAY (2024)

Article Chemistry, Applied

Open Zn-URJC-13 efficient catalyst for mild CO2 transformation using bulky epoxides

Jesus Tapiador, Pedro Leo, Guillermo Calleja, Gisela Orcajo

Summary: This study presents a new MOF material, Zn-URJC-13, with acid and basic sites, permanent porosity, and high affinity to CO2 molecules. The Zn-URJC-13 catalyst exhibits efficient performance in CO2 cycloaddition reactions and can be reused multiple times.

CATALYSIS TODAY (2024)

Article Chemistry, Applied

Effect of supports on the kind of in-situ formed ZnOx species and its consequence for non-oxidative propane dehydrogenation

Dan Zhao, Vita A. Kondratenko, Dmitry E. Doronkin, Shanlei Han, Jan-Dierk Grunwaldt, Uwe Rodemerck, David Linke, Evgenii V. Kondratenko

Summary: This study demonstrates the potential of cheap and commercially available Zr or Ti-based supports and ZnO to serve as active and selective catalysts for propane dehydrogenation (PDH). The catalytically active species formed in situ under PDH conditions consist of isolated ZnOx. ZnOx on the surface of LaZrOx shows the highest rate of propene formation.

CATALYSIS TODAY (2024)

Article Chemistry, Applied

Diels-Alder conversion of biomass-derived furans and ethylene to renewable aromatics over mesoporous titanium phosphate

Hanbyeol Kim, Jung Rae Kim, Young-Kwon Park, Jeong-Myeong Ha, Jungho Jae

Summary: In this study, metal phosphates were used as catalysts for biomass conversion to produce sustainable aromatics through DielsAlder cycloaddition reactions. The effects of synthesis method, activation method, and P/Ti molar ratio on the structure and acid properties of titanium phosphate catalysts were systematically studied. The mesoporous titanium phosphate catalyst synthesized by hydrothermal method at 180℃ for 12 h followed by ethanol refluxing at 60℃ for 24 h at a molar P/Ti ratio of 1 showed the highest surface area and acid site density.

CATALYSIS TODAY (2024)

Article Chemistry, Applied

High propylene selectivity in methanol conversion over metal (Sm, Y, and Gd) modified HZSM-5 catalysts in the methanol to propylene process

Yasin Khani, Sumin Pyo, Kwang-Eun Jeong, Chul-Ung Kim, Moonis Ali Khan, Byong-Hun Jeon, Kun-Yi Andrew Lin, Siyoung Q. Choi, Young-Kwon Park

Summary: A protonated form of Zeolite Socony Mobil-5 (H-ZSM-5) catalyst was synthesized through a hydrothermal method using different sources of silica. The effect of loading the catalyst with yttrium, samarium, and gadolinium on the acidic properties was investigated. Among the metal-loaded catalysts, the Sm/LHZ catalyst showed the best performance in the methanol to propylene conversion due to its high amount of weak and intermediate acid sites, while the Gd-LHZ catalyst increased the selectivity towards ethane and propane.

CATALYSIS TODAY (2024)

Article Chemistry, Applied

Enantioselective synthesis of spiroimidazolones by synergistic catalysis

Michael Franc, Ivana Cisarova, Jan Vesely

Summary: The present study investigates an enantioselective cyclization of enals with imidazolone derivatives catalyzed by a combination of achiral Pd(0) complex and chiral secondary amine. Corresponding spirocyclic imidazolones were produced in high yields with moderate diastereoselectivity and excellent enantioselectivity. The developed co-operative catalytic methodology provides a highly substituted spirocyclic scaffold with four stereogenic centers under mild conditions.

CATALYSIS TODAY (2024)

Article Chemistry, Applied

Influence of the synthesis method of Cu/Y zeolite catalysts for the gas phase oxidative carbonylation of methanol to dimethyl carbonate

Mauro Alvarez, Jennifer Cueto, David P. Serrano, Pablo Marin, Salvador Ordonez

Summary: This study focuses on improving the formulation and preparation methods of catalysts for the production of dimethyl carbonate. By using suitable catalyst preparation methods and copper salt precursors, the researchers successfully produced catalysts with optimal performance for dimethyl carbonate formation.

CATALYSIS TODAY (2024)

Article Chemistry, Applied

Influence of Ag particle size and Ag : Al2O3 surface ratio in catalysts for the chloride-promoted ethylene epoxidation

Claudia J. Keijzer, Luc C. J. Smulders, Dennie Wezendonk, Jan Willem de Rijk, Petra E. de Jongh

Summary: This study investigates the catalytic behavior of alpha-alumina supported silver catalysts in the presence of chloride. It is found that the particle size of silver can affect the selectivity of the catalyst, but different strategies lead to different results. In this size range, the selectivity of ethylene oxide is correlated to the Ag : Al2O3 surface ratio.

CATALYSIS TODAY (2024)

Article Chemistry, Applied

Acid and base catalysis of SrTiO3 nanoparticles for C-C bond-forming reactions

Takeshi Aihara, Wataru Aoki, Michikazu Hara, Keigo Kamata

Summary: The development of acid-base bifunctional catalysts is important for promoting specific chemical transformations. In this study, Ti-based perovskite oxides were synthesized and used as catalysts for two C-C bond-forming reactions (cyanosilylation and Knoevenagel condensation). The highly pure SrTiO3 nanoparticles with a high specific surface area exhibited the highest catalytic performance, and could be easily recovered and reused.

CATALYSIS TODAY (2024)

Article Chemistry, Applied

New Sn-Mg-Al hydrotalcite-based catalysts for Baeyer-Villiger oxidation of β-cyclocitral

Olga Gorlova, Petra Pribylova, Eliska Vyskocilova, Katerina Peroutkova, Jan Kohout, Iva Paterova

Summary: This study investigates the Baeyer-Villiger oxidation of beta-cyclocitral using tin-modified mixed oxides as catalysts. The optimal reaction conditions and the effects of various factors on the reaction course and selectivity were determined. The results show that tin-modified mixed oxides exhibit high activity and selectivity in the oxidation reaction.

CATALYSIS TODAY (2024)

Article Chemistry, Applied

Catalytic upgrading of lignin-derived bio-oils over ion-exchanged H-ZSM-5 and H-beta zeolites

M. I. Avila, M. M. Alonso-Doncel, L. Briones, G. Gomez-Pozuelo, J. M. Escola, D. P. Serrano, A. Peral, J. A. Botas

Summary: The catalytic fast pyrolysis of lignin using ion-exchanged zeolite catalysts showed significant improvements in bio-oil quality and the production of aromatic hydrocarbons and oxygenated compounds.

CATALYSIS TODAY (2024)

Article Chemistry, Applied

Simultaneous catalytic dehydration of methanol and ethanol: How ZSM-5 acidity addresses conversion and products distribution

Enrico Catizzone, Giorgia Ferrarelli, Paolo Bruno, Girolamo Giordano, Massimo Migliori

Summary: The acid-catalysed alcohol conversion reaction is a promising route for de-fossilization strategies. Research on pure alcohol conversion and simultaneous dehydration of mixed alcohols have shown different product compositions, with the type and distribution of acid sites affecting the reaction mechanism.

CATALYSIS TODAY (2024)

Article Chemistry, Applied

Effect of oxygen vacancy modification of ZnO on photocatalytic degradation of methyl orange: A kinetic study

Alireza Ranjbari, Juho Kim, Jihee Yu, Jiyun Kim, Mireu Park, Nayoung Kim, Kristof Demeestere, Philippe M. Heynderickx

Summary: This study investigated a novel kinetic model for the adsorption and photocatalytic degradation of methyl orange using commercial ZnO and reduced ZnO photocatalysts. The results provided new insights into the interaction of catalysts with molecules of different charges and compared with a previous study on methylene blue. The presence of oxygen vacancies in ZnO and their effects on adsorption and photocatalytic degradation were analyzed, and the photocatalytic degradation rate of reduced ZnO was found to increase significantly.

CATALYSIS TODAY (2024)