4.7 Article

Predicting length of stay in ICU and mortality with temporal dilated separable convolution and context-aware feature fusion

期刊

COMPUTERS IN BIOLOGY AND MEDICINE
卷 151, 期 -, 页码 -

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.compbiomed.2022.106278

关键词

Dilated temporal separable convolution; Point-wise convolution based attention; Length of stay prediction; Mortality prediction; Intensive care unit

资金

  1. National Key Research and Development Program of China
  2. NSFC-Zhejiang Joint Fund for the Integration of Industrialization
  3. Science and Technology Major Project of Changsha
  4. [2021YFF1201200]
  5. [U1909208]
  6. [kh2202004]

向作者/读者索取更多资源

In this study, a deep learning method is proposed for predicting the remaining Length of Stay (LoS) and mortality risk for ICU patients. The method includes multiple Temporal Dilated Separable Convolution with Context-Aware Feature Fusion (TDSC-CAFF) modules and a multi-view and multi-scale feature fusion. Experimental results demonstrate that the proposed method outperforms several state-of-the-art methods on two publicly available datasets.
In healthcare, Intensive Care Unit (ICU) bed management is a necessary task because of the limited budget and resources. Predicting the remaining Length of Stay (LoS) in ICU and mortality can assist clinicians in managing ICU beds efficiently. This study proposes a deep learning method based on several successive Temporal Dilated Separable Convolution with Context-Aware Feature Fusion (TDSC-CAFF) modules, and a multi-view and multi -scale feature fusion for predicting the remaining LoS and mortality risk for ICU patients. In each TDSC-CAFF module, temporal dilated separable convolution is used to encode each feature separately, and context-aware feature fusion is proposed to capture comprehensive and context-aware feature representations from the input time-series features, static demographics, and the output of the last TDSC-CAFF module. The CAFF outputs of each module are accumulated to achieve multi-scale representations with different receptive fields. The outputs of TDSC and CAFF are concatenated with skip connection from the output of the last module and the original time-series input. The concatenated features are processed by the proposed Point-Wise convolution-based Attention (PWAtt) that captures the inter-feature context to generate the final temporal features. Finally, the final temporal features, the accumulated multi-scale features, the encoded diagnosis, and static demographic features are fused and then processed by fully connected layers to obtain prediction results. We evaluate our proposed method on two publicly available datasets: eICU and MIMIC-IV v1.0 for LoS and mortality prediction tasks. Experimental results demonstrate that our proposed method achieves a mean squared log error of 0.07 and 0.08 for LoS prediction, and an Area Under the Receiver Operating Characteristic Curve of 0.909 and 0.926 for mortality prediction, on eICU and MIMIC-IV v1.0 datasets, respectively, which outperforms several state-of-the-art methods.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

Article Computer Science, Information Systems

QoS3: Secure Caching in HTTPS Based on Fine-Grained Trust Delegation

Abdulrahman Al-Dailami, Chang Ruan, Zhihong Bao, Tao Zhang

SECURITY AND COMMUNICATION NETWORKS (2019)

Article Biology

Multimodal pre-screening can predict BCI performance variability: A novel subject-specific experimental scheme

Seyyed Bahram Borgheai, Alyssa Hillary Zisk, John McLinden, James Mcintyre, Reza Sadjadi, Yalda Shahriari

Summary: This study proposed a novel personalized scheme using fNIRS and EEG as the main tools to predict and compensate for the variability in BCI systems, especially for individuals with severe motor deficits. By establishing predictive models, it was found that there were significant associations between the predicted performances and the actual performances.

COMPUTERS IN BIOLOGY AND MEDICINE (2024)

Article Biology

Exploring a novel HE image segmentation technique for glioblastoma: A hybrid slime mould and differential evolution approach

Hongliang Guo, Hanbo Liu, Ahong Zhu, Mingyang Li, Helong Yu, Yun Zhu, Xiaoxiao Chen, Yujia Xu, Lianxing Gao, Qiongying Zhang, Yangping Shentu

Summary: In this paper, a BDSMA-based image segmentation method is proposed, which improves the limitations of the original algorithm by combining SMA with DE and introducing a cooperative mixing model. The experimental results demonstrate the superiority of this method in terms of convergence speed and precision compared to other methods, and its successful application to brain tumor medical images.

COMPUTERS IN BIOLOGY AND MEDICINE (2024)

Article Biology

Semi-supervised point consistency network for retinal artery/vein classification

Jingfei Hu, Linwei Qiu, Hua Wang, Jicong Zhang

Summary: This study proposes a novel semi-supervised point consistency network (SPC-Net) for retinal artery/vein (A/V) classification, addressing the challenges of specific tubular structures and limited well-labeled data in CNN-based approaches. The SPC-Net combines an AVC module and an MPC module, and introduces point set representations and consistency regularization to improve the accuracy of A/V classification.

COMPUTERS IN BIOLOGY AND MEDICINE (2024)

Article Biology

ConTraNet: A hybrid network for improving the classification of EEG and EMG signals with limited training data

Omair Ali, Muhammad Saif-ur-Rehman, Tobias Glasmachers, Ioannis Iossifidis, Christian Klaes

Summary: This study introduces a novel hybrid model called ConTraNet, which combines the strengths of CNN and Transformer neural networks, and achieves significant improvement in classification performance with limited training data.

COMPUTERS IN BIOLOGY AND MEDICINE (2024)

Article Biology

A novel mobile phone and tablet application for automatized calculation of pain extent

Juan Antonio Valera-Calero, Dario Lopez-Zanoni, Sandra Sanchez-Jorge, Cesar Fernandez-de-las-Penas, Marcos Jose Navarro-Santana, Sofia Olivia Calvo-Moreno, Gustavo Plaza-Manzano

Summary: This study developed an easy-to-use application for assessing the diagnostic accuracy of digital pain drawings (PDs) compared to the classic paper-and-pencil method. The results demonstrated that digital PDs have higher reliability and accuracy compared to paper-and-pencil PDs, and there were no significant differences in assessing pain extent between the two methods. The PAIN EXTENT app showed good convergent validity.

COMPUTERS IN BIOLOGY AND MEDICINE (2024)

Article Biology

Radial magnetic resonance image reconstruction with a deep unrolled projected fast iterative soft-thresholding network

Biao Qu, Jialue Zhang, Taishan Kang, Jianzhong Lin, Meijin Lin, Huajun She, Qingxia Wu, Meiyun Wang, Gaofeng Zheng

Summary: This study proposes a deep unrolled neural network, pFISTA-DR, for radial MRI image reconstruction, which successfully preserves image details using a preprocessing module, learnable convolution filters, and adaptive threshold.

COMPUTERS IN BIOLOGY AND MEDICINE (2024)

Article Biology

Improving mixed-integer temporal modeling by generating synthetic data using conditional generative adversarial networks: A case study of fluid overload prediction in the intensive care unit

Alireza Rafiei, Milad Ghiasi Rad, Andrea Sikora, Rishikesan Kamaleswaran

Summary: This study aimed to improve machine learning model prediction of fluid overload by integrating synthetic data, which could be translated to other clinical outcomes.

COMPUTERS IN BIOLOGY AND MEDICINE (2024)

Article Biology

Densely connected convolutional networks for ultrasound image based lesion segmentation

Jinlian Ma, Dexing Kong, Fa Wu, Lingyun Bao, Jing Yuan, Yusheng Liu

Summary: In this study, a new method based on MDenseNet is proposed for automatic segmentation of nodular lesions from ultrasound images. Experimental results demonstrate that the proposed method can accurately extract multiple nodules from thyroid and breast ultrasound images, with good accuracy and reproducibility, and it shows great potential in other clinical segmentation tasks.

COMPUTERS IN BIOLOGY AND MEDICINE (2024)

Article Biology

Multi-omics fusion with soft labeling for enhanced prediction of distant metastasis in nasopharyngeal carcinoma patients after radiotherapy

Jiabao Sheng, SaiKit Lam, Jiang Zhang, Yuanpeng Zhang, Jing Cai

Summary: Omics fusion is an important preprocessing approach in medical image processing that assists in various studies. This study aims to develop a fusion methodology for predicting distant metastasis in nasopharyngeal carcinoma by mitigating the disparities in omics data and utilizing a label-softening technique and a multi-kernel-based neural network.

COMPUTERS IN BIOLOGY AND MEDICINE (2024)

Article Biology

Regularity and variability of functional brain connectivity characteristics between gyri and sulci under naturalistic stimulus

Zhenxiang Xiao, Liang He, Boyu Zhao, Mingxin Jiang, Wei Mao, Yuzhong Chen, Tuo Zhang, Xintao Hu, Tianming Liu, Xi Jiang

Summary: This study systematically investigates the functional connectivity characteristics between gyri and sulci in the human brain under naturalistic stimulus, and identifies unique features in these connections. This research provides novel insights into the functional brain mechanism under naturalistic stimulus and lays a solid foundation for accurately mapping the brain anatomy-function relationship.

COMPUTERS IN BIOLOGY AND MEDICINE (2024)

Article Biology

Unraveling the allosteric inhibition mechanism of PARP-1 CAT and the D766/770A mutation effects via Gaussian accelerated molecular dynamics and Markov state model

Qianqian Wang, Mingyu Zhang, Aohan Li, Xiaojun Yao, Yingqing Chen

Summary: The development of PARP-1 inhibitors is crucial for the treatment of various cancers. This study investigates the structural regulation of PARP-1 by different allosteric inhibitors, revealing the basis of allosteric inhibition and providing guidance for the discovery of more innovative PARP-1 inhibitors.

COMPUTERS IN BIOLOGY AND MEDICINE (2024)

Article Biology

DualAttNet: Synergistic fusion of image-level and fine-grained disease attention for multi-label lesion detection in chest X-rays

Qing Xu, Wenting Duan

Summary: In this paper, a dual attention supervised module, named DualAttNet, is proposed for multi-label lesion detection in chest radiographs. By efficiently fusing global and local lesion classification information, the module is able to recognize targets with different sizes. Experimental results show that DualAttNet outperforms baselines in terms of mAP and AP50 with different detection architectures.

COMPUTERS IN BIOLOGY AND MEDICINE (2024)

Article Biology

Searching for significant reactions and subprocesses in models of biological systems based on Petri nets

Kaja Gutowska, Piotr Formanowicz

Summary: The primary aim of this research is to propose algorithms for identifying significant reactions and subprocesses within biological system models constructed using classical Petri nets. These solutions enable two analysis methods: importance analysis for identifying critical individual reactions to the model's functionality and occurrence analysis for finding essential subprocesses. The utility of these methods has been demonstrated through analyses of an example model related to the DNA damage response mechanism. It should be noted that these proposed analyses can be applied to any biological phenomenon represented using the Petri net formalism. The presented analysis methods extend classical Petri net-based analyses, enhancing our comprehension of the investigated biological phenomena and aiding in the identification of potential molecular targets for drugs.

COMPUTERS IN BIOLOGY AND MEDICINE (2024)

Article Biology

LDP-GAN : Generative adversarial networks with local differential privacy for patient medical records synthesis

Hansle Gwon, Imjin Ahn, Yunha Kim, Hee Jun Kang, Hyeram Seo, Heejung Choi, Ha Na Cho, Minkyoung Kim, Jiye Han, Gaeun Kee, Seohyun Park, Kye Hwa Lee, Tae Joon Jun, Young-Hak Kim

Summary: Electronic medical records have potential in advancing healthcare technologies, but privacy issues hinder their full utilization. Deep learning-based generative models can mitigate this problem by creating synthetic data similar to real patient data. However, the risk of data leakage due to malicious attacks poses a challenge to traditional generative models. To address this, we propose a method that employs local differential privacy (LDP) to protect the model from attacks and preserve the privacy of training data, while generating medical data with reasonable performance.

COMPUTERS IN BIOLOGY AND MEDICINE (2024)

Article Biology

Phase retrieval for X-ray differential phase contrast radiography with knowledge transfer learning from virtual differential absorption model

Siwei Tao, Zonghan Tian, Ling Bai, Yueshu Xu, Cuifang Kuang, Xu Liu

Summary: This study proposes a transfer learning-based method to address the phase retrieval problem in grating-based X-ray phase contrast imaging. By generating a training dataset and using deep learning techniques, this method improves image quality and can be applied to X-ray 2D and 3D imaging.

COMPUTERS IN BIOLOGY AND MEDICINE (2024)