4.7 Article

A novel chitosan-biochar immobilized microorganism strategy to enhance bioremediation of crude oil in soil

期刊

CHEMOSPHERE
卷 313, 期 -, 页码 -

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.chemosphere.2022.137367

关键词

Chitosan-biochar; Immobilized microorganisms; Microbial diversity; Oil-contaminated soil

向作者/读者索取更多资源

The chitosan-biochar composite was used as a carrier to immobilize Pseudomonas aeruginosa and Bacillus licheniformis for the remediation of oil-contaminated soil. The study found that the composite material had a high removal rate of crude oil and promoted the growth of oil-degrading bacteria. This research presents a new strategy for bioremediation of oil-contaminated soil.
The chitosan-biochar composite is a clean and environmentally friendly immobilized microorganisms carrier. In this study, the chitosan-biochar composite as a carrier to immobilize a compound microbial agent contained Pseudomonas aeruginosa and Bacillus licheniformis, and investigated its role in the remediation of oil-contaminated soil. When using 1% (v/v) acetic acid, 3% (m/v) chitosan solution, 0.1% biochar, 4% (v/v) NaOH solution, freeze-drying 6 h, the optimal chitosan-biochar composite material could be obtained. The specific surfacearea of the material increased to 1.725 m2/g and the average pore size also increased from 130.2260 nm to 165.2980 nm after the addition of biochar through the analysis of specific surface area and pore size, which enlarged the contact area of microorganisms and crude oil with the material. SEM showed that the bacterial successfully adhered to the surface and internal of the material. Using FTIR, the results showed that the synthesis of com-posite carrier material was the covalent combination of -NH2 on chitosan and -COOH on biochar, forming a new chemical bond-NH-CO-. After 60 days of remediation of oil-contaminated soil, the removal rate of crude oil by chitosan-biochar composite immobilized microorganism method was 45.82%, which was 21.26% higher than that of natural remediation. Simultaneously, several oil-degrading bacteria increased at genus level, including Nocardioides (26.79%-33.09%), Bacillus (3.01%-4.10%), Dietzia (1.84%-5.56%), Pseudomonas (0-0.78%), among which Pseudomonas belongs to exogenous bacteria. The results indicated that the chitosan-biochar composite material has high application value in removing crude oil, and further provides a new strategy for bioremediation of oil-contaminated soil.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据