4.8 Article

Real-Time Ratiometric Optical Nanoscale Thermometry

期刊

ACS NANO
卷 -, 期 -, 页码 -

出版社

AMER CHEMICAL SOC
DOI: 10.1021/acsnano.2c10974

关键词

nanothermometers; anti-Stokes excitation; ratiometric; germanium vacancy; silicon vacancy; nanodiamonds; real time

向作者/读者索取更多资源

All-optical nanothermometry is a powerful tool for measuring nanoscale temperatures in various applications. This study presents a real-time nanothermometry technique using codoped nanodiamonds with high sensitivity and resolution. The technique utilizes temperature sensors that emit spectrally separated fluorescence signals and a parallel detection scheme for fast readout. The method is demonstrated by monitoring temperature changes in microcircuits and MoTe2 field-effect transistors.
All-optical nanothermometry has become a powerful, remote tool for measuring nanoscale temperatures in applications ranging from medicine to nano-optics and solidstate nanodevices. The key features of any candidate nano thermometer are brightness, sensitivity, and (signal, spatial, and temporal) resolution. Here, we demonstrate a real-time, diamond-based nanothermometry technique with excellent sensitivity (1.8% K-1) and record-high resolution (5.8 x 104 K Hz-1/2 W cm-2) based on codoped nanodiamonds. The distinct performance of our approach stems from two factors: (i) temperature sensors-nanodiamonds cohosting two group IV color centers -engineered to emit spectrally separated Stokes and anti-Stokes fluorescence signals under excitation by a single laser source and (ii) a parallel detection scheme based on filtering optics and high-sensitivity photon counters for fast readout. We demonstrate the performance of our method by monitoring temporal changes in the local temperature of a microcircuit and a MoTe2 field-effect transistor. Our work advances a powerful, alternative strategy for time-resolved temperature monitoring and mapping of micro-/nanoscale devices such as microfluidic channels, nanophotonic circuits, and nanoelectronic devices, as well as complex biological environments such as tissues and cells.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据