4.7 Article

Correlation of membrane fouling with topography of patterned membranes for water treatment

期刊

JOURNAL OF MEMBRANE SCIENCE
卷 498, 期 -, 页码 14-19

出版社

ELSEVIER SCIENCE BV
DOI: 10.1016/j.memsci.2015.09.058

关键词

Patterned membrane; Antifouling; Prism pattern; Crossflow filtration; CFD modeling

资金

  1. Korea Research Foundation Grant funded by the Korean Government [KRF-314-D00234]
  2. Korea Ministry of Environment as The Eco-Innovation project (Global Top project) [GT-SWS-11-02-007-6]
  3. Korea Environmental Industry & Technology Institute (KEITI) [GT-SWS-11-02-007-6] Funding Source: Korea Institute of Science & Technology Information (KISTI), National Science & Technology Information Service (NTIS)

向作者/读者索取更多资源

Particle depositions on patterned membrane surface were experimentally measured and compared with those of non-patterned membranes. Prism patterns introduced to membrane surface significantly reduced particle deposition. A larger pattern was less effective against particle deposition than a smaller pattern under low Reynolds number, but was very successful in mitigating particle deposition under high Reynolds number at faster crossflow velocity. The particle deposition and anti-fouling mechanisms were analyzed using computational fluid dynamics simulation. A vortex was formed in the valley region between prism patterns, proposing that particles entering the valley region because of permeation drag had a chance to return back to bulk crossflow stream during flowing along with the vortex. The distance between the vortex and bulk stream was shorter under high Reynolds number than under small Reynolds number, suggesting that the return of particles in the valley region into the bulk stream was quite enhanced by increasing crossflow velocity. To further mitigate particle deposition on the valley region, new patterns were developed by introducing intervals to prism patterns and showed much improvement in antifouling ability by enhancing the vortex and reducing the portion of permeation stream in the valley region. (C) 2015 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据