4.7 Review

Recent Insights into Insect Olfactory Receptors and Odorant-Binding Proteins

期刊

INSECTS
卷 13, 期 10, 页码 -

出版社

MDPI
DOI: 10.3390/insects13100926

关键词

olfaction; odorant-binding proteins; odorant receptors; olfactory neurons; disease vector

资金

  1. National Institute of Health, Deafness and Communicative Disorders [R01 DC015230]

向作者/读者索取更多资源

This article reviews recent advances in understanding the detection of volatiles at the level of olfactory receptors and odorant-binding proteins in insects, and discusses multi-modal mechanisms in insect behavior and the applications of genome editing.
Simple Summary Starting with efforts to understand pheromone detection in moths, the ability of insects to localize food and mates has captivated researchers for over a century. Here we review recent advances in understanding the detection of volatiles at the level of olfactory receptors and odorant-binding proteins focusing on advances in biological understanding. Drosophila remains an important model system, but CRIPSR-mediated genome editing is opening the door to genetic analysis in a wide range of insects, including disease vectors and important agricultural pests. This review will spotlight new findings for the initial recognition and signaling events by odorant-binding proteins and olfactory receptors in responses to odorants. Finally, we discussed how some critical insect behaviors appear to have evolved multimodal mechanisms to maximize response robustness. Human and insect olfaction share many general features, but insects differ from mammalian systems in important ways. Mammalian olfactory neurons share the same overlying fluid layer in the nose, and neuronal tuning entirely depends upon receptor specificity. In insects, the olfactory neurons are anatomically segregated into sensilla, and small clusters of olfactory neurons dendrites share extracellular fluid that can be independently regulated in different sensilla. Small extracellular proteins called odorant-binding proteins are differentially secreted into this sensillum lymph fluid where they have been shown to confer sensitivity to specific odorants, and they can also affect the kinetics of the olfactory neuron responses. Insect olfactory receptors are not G-protein-coupled receptors, such as vertebrate olfactory receptors, but are ligand-gated ion channels opened by direct interactions with odorant molecules. Recently, several examples of insect olfactory neurons expressing multiple receptors have been identified, indicating that the mechanisms for neuronal tuning may be broader in insects than mammals. Finally, recent advances in genome editing are finding applications in many species, including agricultural pests and human disease vectors.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据