4.7 Article

Emerging roles of ER-resident selenoproteins in brain physiology and physiopathology

期刊

REDOX BIOLOGY
卷 55, 期 -, 页码 -

出版社

ELSEVIER
DOI: 10.1016/j.redox.2022.102412

关键词

Selenium; Thiol redox switch; ER protein Folding; Calcium mobilization; Brain pathologies

资金

  1. Inserm
  2. Rouen Normandie University
  3. Normandie region
  4. ComUE Normandie University

向作者/读者索取更多资源

The brain has a high oxygen consumption rate and is sensitive to oxidative stress. Selenium (Se) is a crucial trace element that plays an important role in maintaining redox balance in the brain through selenoproteins. These selenoproteins, including GPX4, are essential for ER homeostasis and may have implications for neurological diseases.
The brain has a very high oxygen consumption rate and is particularly sensitive to oxidative stress. It is also the last organ to suffer from a loss of selenium (Se) in case of deficiency. Se is a crucial trace element present in the form of selenocysteine, the 21st proteinogenic amino acid present in selenoproteins, an essential protein family in the brain that participates in redox signaling. Among the most abundant selenoproteins in the brain are glutathione peroxidase 4 (GPX4), which reduces lipid peroxides and prevents ferroptosis, and selenoproteins W, I, F, K, M, O and T. Remarkably, more than half of them are proteins present in the ER and recent studies have shown their involvement in the maintenance of ER homeostasis, glycoprotein folding and quality control, redox balance, ER stress response signaling pathways and Ca2+ homeostasis. However, their molecular functions remain mostly undetermined. The ER is a highly specialized organelle in neurons that maintains the physical continuity of axons over long distances through its continuous distribution from the cell body to the nerve terminals. Alteration of this continuity can lead to degeneration of distal axons and subsequent neuronal death. Elucidation of the function of ER-resident selenoproteins in neuronal pathophysiology may therefore become a new perspective for understanding the pathophysiology of neurological diseases. Here we summarize what is currently known about each of their molecular functions and their impact on the nervous system during development and stress.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据