4.5 Article

Identifying Uncertainty in Laser Powder Bed Fusion Additive Manufacturing Models

期刊

JOURNAL OF MECHANICAL DESIGN
卷 138, 期 11, 页码 -

出版社

ASME
DOI: 10.1115/1.4034103

关键词

-

向作者/读者索取更多资源

As additive manufacturing (AM) matures, models are beginning to take a more prominent stage in design and process planning. A limitation frequently encountered in AM models is a lack of indication about their precision and accuracy. Often overlooked, model uncertainty is required for validation of AM models, qualification of AM-produced parts, and uncertainty management. This paper presents a discussion on the origin and propagation of uncertainty in laser powder bed fusion (L-PBF) models. Four sources of uncertainty are identified: modeling assumptions, unknown simulation parameters, numerical approximations, and measurement error in calibration data. Techniques to quantify uncertainty in each source are presented briefly, along with estimation algorithms to diminish prediction uncertainty with the incorporation of online measurements. The methods are illustrated with a case study based on a thermal model designed for melt pool width predictions. Model uncertainty is quantified for single track experiments, and the effect of online estimation in overhanging structures is studied via simulation.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据