4.6 Article

Magneto-electric characteristics in (Mn, Cu) co-doped BiFeO3 multiferroic nanoparticles

期刊

出版社

SPRINGER
DOI: 10.1007/s10854-016-4927-1

关键词

-

资金

  1. Deanship of Scientific Research at King Saud University [RG 1435-004]

向作者/读者索取更多资源

Multiferroic nanoparticles having general formula BiFe0.99-xMnxCu0.01O3 (x = 0, 0.01, 0.02, 0.03 & 0.04) were prepared by a chemically derived method to explore the magneto-electric characteristics of this new class of materials. X-ray diffraction confirmed that all the samples had rhombohedraly distorted cubic perovskite 3D lattice. Lattice constant was increased with increasing concentration of Mn. Micrographs obtained from a field emission scanning electron microscope revealed a fine distribution of well-shaped particles while the particle size was increased with increased contents of Mn. Enhanced hopping mechanism induced by substitution of Mn at the lattice sites of Fe resulted in an increased AC conductivity. Ferroelectricity was observed to increase with increased Mn, attributed mainly to the leakage current due to free charge carriers instigated by multiple oxidation states of Fe and Mn. It has been observed that antiferromagnetic bismuth ferrite begins to show ferromagnetic behavior due to the collapse of antiferromagnetic spin structure with increased Mn contents.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据