4.8 Article

Tackling realistic Li+ flux for high-energy lithium metal batteries

期刊

NATURE COMMUNICATIONS
卷 13, 期 1, 页码 -

出版社

NATURE PORTFOLIO
DOI: 10.1038/s41467-022-33151-w

关键词

-

资金

  1. National Natural Science Foundation of China [22072134, 22161142017, U21A2081]
  2. Natural Science Foundation of Zhejiang Province [LZ21B030002]
  3. Fundamental Research Funds for the Zhejiang Provincial Universities [2021XZZX010]
  4. Fundamental Research Funds for the Central Universities [2021FZZX001-09]
  5. Hundred Talents Program of Zhejiang University

向作者/读者索取更多资源

The authors establish a mechanistic model to analyze the effect of solid electrolyte interphase (SEI) on realistic lithium plating in high-fluorine electrolytes. By designing an efficient electrolyte to generate a homogenous dual-halide SEI, the Coulombic efficiency of lithium metal batteries can be improved.
The low conductivity of LiF disturbs Li+ diffusion across solid electrolyte interphase (SEI) and induces Li+ transfer-driven dendritic growth. Herein, the authors establish a mechanistic model to decipher how the SEI affects realistic Li plating in high-fluorine electrolytes. Electrolyte engineering advances Li metal batteries (LMBs) with high Coulombic efficiency (CE) by constructing LiF-rich solid electrolyte interphase (SEI). However, the low conductivity of LiF disturbs Li+ diffusion across SEI, thus inducing Li+ transfer-driven dendritic deposition. In this work, we establish a mechanistic model to decipher how the SEI affects Li plating in high-fluorine electrolytes. The presented theory depicts a linear correlation between the capacity loss and current density to identify the slope k (determined by Li+ mobility of SEI components) as an indicator for describing the homogeneity of Li+ flux across SEI, while the intercept dictates the maximum CE that electrolytes can achieve. This model inspires the design of an efficient electrolyte that generates dual-halide SEI to homogenize Li+ distribution and Li deposition. The model-driven protocol offers a promising energetic analysis to evaluate the compatibility of electrolytes to Li anode, thus guiding the design of promising electrolytes for LMBs.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据