4.7 Article

A general framework for assessing system resilience using Bayesian networks: A case study of sulfuric acid manufacturer

期刊

JOURNAL OF MANUFACTURING SYSTEMS
卷 41, 期 -, 页码 211-227

出版社

ELSEVIER SCI LTD
DOI: 10.1016/j.jmsy.2016.09.006

关键词

Bayesian network; Resilience; Manufacturing

向作者/读者索取更多资源

Supply chains play an important role in modern society and national economic development. In recent years, supply chains are more susceptible to variety of disruptive events, including natural disasters, man-made attacks, and common failures due to their complexity, globalization, and interconnected structures. Hence, it is important to design resilient supply chains which are capable of withstanding and recovering rapidly from disruptive events. This paper first explores the key drivers that contribute to the design of resilient supply chains based on the notion of absorptive, adaptive and restorative capacities. Second, it introduces a generic conceptual framework comprising five key phases: threat analysis, resilience capacity design, resilience cost evaluation, resilience quantification, and resilience improvement. The primary challenge to the literature of system resilience is how to measure it qualitatively. Findings from literature indicate that many of the drivers to the system resilience are qualitative such as staff cooperation and collaboration during disruptive events, level of preparation against natural disaster, among others. To fill the gap between qualitative and quantitative assessment of resilience, we employed Bayesian network to quantify the system resilience. Bayesian network is a rigorous tool for measuring risks under uncertainty, representing dependency between causes and effects, and making special types of reasoning. Additionally, it is capable of handling both qualitative and quantitative variables in terms of probability. We implemented Bayesian network for quantifying the supply chain system resilience of sulfuric acid manufacturer in Iran. Different scenarios have been defined and implemented to identify critical variables that are susceptible to the system resilience of sulfuric acid manufacturer. (C) 2016 The Society of Manufacturing Engineers. Published by Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
Article Engineering, Industrial

Deep learning-based semantic segmentation of machinable volumes for cyber manufacturing service

Xiaoliang Yan, Reed Williams, Elena Arvanitis, Shreyes Melkote

Summary: This paper extends prior work by developing a semantic segmentation approach for machinable volume decomposition using pre-trained generative process capability models, providing manufacturability feedback and labels of candidate machining operations for query 3D parts.

JOURNAL OF MANUFACTURING SYSTEMS (2024)

Article Engineering, Industrial

Interpretable real-time monitoring of pipeline weld crack leakage based on wavelet multi-kernel network

Jing Huang, Zhifen Zhang, Rui Qin, Yanlong Yu, Guangrui Wen, Wei Cheng, Xuefeng Chen

Summary: In this study, a deep learning framework that combines interpretability and feature fusion is proposed for real-time monitoring of pipeline leaks. The proposed method extracts abstract feature details of leak acoustic emission signals through multi-level dynamic receptive fields and optimizes the learning process of the network using a feature fusion module. Experimental results show that the proposed method can effectively extract distinguishing features of leak acoustic emission signals, achieving higher recognition accuracy compared to typical deep learning methods. Additionally, feature map visualization demonstrates the physical interpretability of the proposed method in abstract feature extraction.

JOURNAL OF MANUFACTURING SYSTEMS (2024)