4.8 Article

Towards the understanding of the graphene oxide structure: How to control the formation of humic- and fulvic-like oxidized debris

期刊

CARBON
卷 84, 期 -, 页码 299-309

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.carbon.2014.12.027

关键词

-

资金

  1. Government of Spain, Ministry for Economy and Competiveness [CTQ2013-44213-R]
  2. Generalitat Valenciana [PROMETEOII/2014/007, ISIC/2012/008]
  3. Government of Spain, Ministry of Science and Education

向作者/读者索取更多资源

Former structural models of graphene oxide (GO) indicated that it consists of graphene-like sheets with oxygen groups, and no attention was paid to the resulting sheet size. We now provide evidence of the complex GO structure consisting of large and small GO sheets (or oxidized debris). Different oxidation reactions were studied. KMnO4 derived GO consists of large sheets (20-30 wt.%), and oxidized debris deposits, which are formed by humic- and fulvic-like fragments. Large GO sheets contain oxygen groups, especially at the edges, such as carbonyl, lactone and carboxylic groups. Humic-like debris consists of an amorphous gel containing more oxygenated groups and trapped water molecules. The main desorbable fraction upon heating is the fulvic-like material, which contains oxygen groups and fragments with high edge/surface ratio. KClO3 in HNO3 or the Brodie method produces a highly oxidized material but at the flake level surface only; little oxidized debris and water contents are found. It is noteworthy that an efficient basal cutting of the graphitic planes in addition to an effective intercalation is caused by KMnO4, and the aid of NaNO3 makes this process even more effective, thus yielding large monolayers of GO and a large amount of humic- and fulvic-like substances. (C) 2014 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

Article Chemistry, Multidisciplinary

Room-Temperature Observation of Near-Intrinsic Exciton Linewidth in Monolayer WS2

Jie Fang, Kan Yao, Tianyi Zhang, Mingsong Wang, Taizhi Jiang, Suichu Huang, Brian A. Korgel, Mauricio Terrones, Andrea Alu, Yuebing Zheng

Summary: The study found that a 7.18 meV near-intrinsic linewidth can be observed at room temperature when monolayer WS2 is coupled with a moderate-refractive-index hydrogenated silicon nanosphere in water. By boosting the dynamic competition between exciton and trion decay channels in WS2 through the nanosphere-supported Mie resonances, the coherent linewidth can be tuned from 35 down to 7.18 meV. This modulation of exciton linewidth and its associated mechanism are robust even in the presence of defects, easing the sample quality requirement and providing new opportunities for TMD-based nanophotonics and optoelectronics.

ADVANCED MATERIALS (2022)

Article Nanoscience & Nanotechnology

Broadband, Ultra-High-Responsive Monolayer MoS2/SnS2 Quantum-Dot-Based Mixed-Dimensional Photodetector

Chandra Sekhar Reddy Kolli, Venkatarao Selamneni, Barbara A. Muniz Martinez, Andres Fest Carreno, David Emanuel Sanchez, Mauricio Terrones, Elodie Strupiechonski, Andres De Luna Bugallo, Parikshit Sahatiya

Summary: This study fabricates a mixed-dimensional hybrid material for high-performance and broadband photodetectors. The fabricated device exhibits high responsivity in the UV, visible, and NIR regions, while effectively suppressing dark current.

ACS APPLIED MATERIALS & INTERFACES (2022)

Article Chemistry, Multidisciplinary

Rapid Biomarker Screening of Alzheimer's Disease by Interpretable Machine Learning and Graphene-Assisted Raman Spectroscopy

Ziyang Wang, Jiarong Ye, Kunyan Zhang, Li Ding, Tomotaroh Granzier-Nakajima, Jeewan C. Ranasinghe, Yuan Xue, Shubhang Sharma, Isabelle Biase, Mauricio Terrones, Se Hoon Choi, Chongzhao Ran, Rudolph E. Tanzi, Sharon X. Huang, Can Zhang, Shengxi Huang

Summary: The study introduces a platform that utilizes graphene-assisted Raman spectroscopy and machine learning to rapidly screen Alzheimer's disease (AD) biomarkers in transgenic animal brains. By contacting monolayer graphene with brain slices, the accuracy of machine learning classification is significantly improved. The study also identifies AD biomarkers based on spectral feature importance map, providing important insights for AD research.

ACS NANO (2022)

Article Chemistry, Multidisciplinary

Precision Modification of Monolayer Transition Metal Dichalcogenides via Environmental E-Beam Patterning

Ryan Selhorst, Zhuohang Yu, David Moore, Jie Jiang, Michael A. Susner, Nicholas R. Glavin, Ruth Pachter, Mauricio Terrones, Benji Maruyama, Rahul Rao

Summary: Layered Transition Metal Dichalcogenides (TMDs) are important materials with a diverse range of optoelectronic properties. This study investigates the spatial tailoring of TMDs through electron-beam patterning, achieving high resolution and demonstrating potential for nanoscale functionalization. The modulated properties were found to be dependent on various parameters, and the results were confirmed through spectroscopic analysis and density functional theory modeling. This research provides a robust method for property modulation and functionalization of TMDs at the nanoscale.

ACS NANO (2023)

Editorial Material Chemistry, Physical

Novel carbon allotropes and beyond

Nianjun Yang, Mauricio Terrones

CARBON (2023)

Article Chemistry, Multidisciplinary

Biomimetic Construction of Ferrite Quantum Dot/Graphene Heterostructure for Enhancing Ion/Charge Transfer in Supercapacitors

Min Fu, Wei Chen, Yu Lei, Hao Yu, Yuxiao Lin, Mauricio Terrones

Summary: A general biomimetic mineralization synthetic strategy was proposed to synthesize ferrite quantum dot/graphene heterostructures. The optimized heterostructure exhibited exceptional capacitance and cycling performance, indicating its potential as advanced electrode materials for supercapacitors.

ADVANCED MATERIALS (2023)

Article Chemistry, Inorganic & Nuclear

Formation and Transformation of Cu2-xSe1-yTey Nanoparticles Synthesized by Tellurium Anion Exchange of Copper Selenide

Katherine L. Thompson, Rowan R. Katzbaer, Mauricio Terrones, Raymond E. Schaak

Summary: Ion exchange reactions of colloidal nanoparticles allow for modification of composition while maintaining morphology and crystal structure, which is crucial for tuning properties and producing otherwise inaccessible materials. In this study, tellurium anion exchange of copper selenide nanoparticles was conducted, resulting in the formation of solid solutions with tunable compositions. The post-exchange reactivity of the solid solution nanoparticles, including transformation of composition, surface chemistry, and colloidal dispersibility, was observed due to the apparent metastability of the product.

INORGANIC CHEMISTRY (2023)

Article Chemistry, Physical

Tunable Couplings of Photons with Bright and Dark Excitons in Monolayer Semiconductors on Plasmonic-Nanosphere-on-Mirror Cavities

Jie Fang, Suichu Huang, Kan Yao, Tianyi Zhang, Mauricio Terrones, Wentao Huang, Yunlu Pan, Yuebing Zheng

Summary: Tunable exciton-photon couplings have been demonstrated in monolayer TMDs, showing strong bright-exciton-photon couplings and revealing the novel interactions between bright and dark exciton-photon hybrids in a single optical cavity. The waveguide mode can be tuned in wavelengths by controlling the spacer thickness, and the relative contribution from the antenna mode coupled with dark excitons can be dynamically enlarged by increasing the excitation angle. This study opens new possibilities in tunable QED and provides insights into the coexistence of bright and dark exciton-photon couplings.

JOURNAL OF PHYSICAL CHEMISTRY C (2023)

Article Chemistry, Multidisciplinary

Endothelial Cell Selectivity to Nanoparticles Depends on Mechanical Phenotype

Pouria Fattahi, Yin-Ting Yeh, Tiankai Zhao, Mousa Younesi, Changjin Huang, Mauricio Terrones, Siyang Zheng, Justin L. Brown, Dan Dongeun Huh, Sulin Zhang, Peter J. Butler

Summary: Endothelial cells (ECs) exhibit different shapes and mechanical properties depending on the flow in their environment, and these factors affect the uptake of therapeutic nanoparticles (NPs). Cells with elongated shape and higher stiffness show higher uptake of NPs, while those with polygonal shape and lower stiffness show lower uptake. The elongated cells in areas of high laminar shear exhibit less NP uptake compared to nonelongated cells in chaotic, lower shear areas. These findings suggest that manipulating the morphology and mechanical properties of ECs can enhance the uptake of therapeutic NPs for preventing atherosclerosis.

ADVANCED MATERIALS INTERFACES (2023)

Article Chemistry, Physical

Direct Laser Writing of Multimetal Bifunctional Catalysts for Overall Water Splitting

Shannon McGee, Andres Fest, Cierra Chandler, Nabila N. Nova, Yu Lei, James Goff, Susan B. Sinnott, Ismaila Dabo, Mauricio Terrones, Lauren D. Zarzar

Summary: In this study, we synthesized multimetal catalysts using a laser synthesis method and found that adding a small amount of chromium to the catalyst can enhance the hydrogen evolution efficiency. This research provides new insights for future electrocatalytic design.

ACS APPLIED ENERGY MATERIALS (2023)

Article Chemistry, Multidisciplinary

Toward High-Performance p-Type Two-Dimensional Field Effect Transistors: Contact Engineering, Scaling, and Doping

Aaryan Oberoi, Ying Han, Sergei P. Stepanoff, Andrew Pannone, Yongwen Sun, Yu-Chuan Lin, Chen Chen, Jeffrey R. Shallenberger, Da Zhou, Mauricio Terrones, Joan M. Redwing, Joshua A. Robinson, Douglas E. Wolfe, Yang Yang, Saptarshi Das

Summary: This study presents a three-pronged approach to achieve high-performance p-type FETs based on synthetic WSe2, including contact engineering, channel length scaling, and monolayer doping. By using Pd as the contact metal and monolayer WOxSey as the p-type dopant, the ON-state performance of the FETs was significantly improved and the contact resistance was reduced.

ACS NANO (2023)

Article Chemistry, Multidisciplinary

Observation of Room-Temperature Exciton-Polariton Emission from Wide-Ranging 2D Semiconductors Coupled with a Broadband Mie Resonator

Jie Fang, Kan Yao, Mingsong Wang, Zhuohang Yu, Tianyi Zhang, Taizhi Jiang, Suichu Huang, Brian A. Korgel, Mauricio Terrones, Andrea Alu, Yuebing Zheng

Summary: In this study, we achieved on-demand exciton-polariton emission from a wide range of TMDs at room temperature by hybridizing excitons with broadband Mie resonances. The system demonstrated stable polaritonic photoluminescence and multiple Rabi splittings.

NANO LETTERS (2023)

Article Materials Science, Multidisciplinary

Band type engineering using different stacking configurations of anisotropic and isotropic monolayer transition metal dichalcogenides

Gowtham Polumati, Barbara A. Muniz Martinez, Chandra Sekhar Reddy Kolli, Venkatarao Selamneni, Mario Flores Salazar, David Emanuel Sanchez, Andres Fest Carreno, Mauricio Terrones, Andres De Luna Bugallo, Parikshit Sahatiya

Summary: This work demonstrates the band-type engineering and charge transport mechanism of vertically stacked monolayers of MoS2-ReS2 under visible light illumination. The study investigates the impact of stacking order on band alignment and validates the formation of the vertically stacked heterostructure. The results show the significant role of stacking configuration in the optoelectronic properties.

2D MATERIALS (2023)

Article Chemistry, Multidisciplinary

Raman spectroscopy of a few layers of bismuth telluride nanoplatelets

Victor Carozo, Bruno R. Carvalho, Syed Hamza Safeer, Leandro Seixas, Pedro Venezuela, Mauricio Terrones

Summary: We investigated the electronic and phonon properties of few-layered Bi2Te3 systems with different layer thicknesses using Raman spectroscopy and first-principles calculations. The main Raman modes showed frequency dispersion and changes in intensity and lineshape with the variation of layer thickness and excitation energy. Resonant Raman conditions were reached for certain thicknesses due to van Hove singularities at the electronic density of states. Our results demonstrate the significant influence of layer numbers on the Raman scattering mechanics in Bi2Te3 systems.

NANOSCALE ADVANCES (2023)

Article Nanoscience & Nanotechnology

Effects of Moisture and Synthesis-Derived Contaminants on the Mechanical Properties of Graphene Oxide: A Molecular Dynamics Investigation

Luis E. Paniagua-Guerra, Mauricio Terrones, Bladimir Ramos-Alvarado

Summary: This research reports on the effects of the chemical composition of graphene oxide (GO) sheets on the mechanical properties of bulk GO, and analyzes three key factors. The findings reveal the importance of the structural integrity of the carbon basal plane and hydrogen-bond networks in determining the mechanical behavior of GO, as well as the negative impact of interlayer sulfate ion contaminants on the mechanical properties of GO.

ACS APPLIED MATERIALS & INTERFACES (2022)

Article Chemistry, Physical

Dendritic growth lowers carbon electrode work function for efficient perovskite solar cells

Jie Sheng, Jingshan He, Dun Ma, Yuanbo Wang, Wu Shao, Tian Ding, Ronghao Cen, Jingwen He, Zhihao Deng, Wenjun Wu

Summary: This study presents an innovative approach to improve the photovoltaic conversion characteristics and stability of perovskite solar cells through carbon electrode interface modification. By in-situ polymerization and carbonization on the surface of nano-graphite, a dendritic structure carbon electrode is formed, reducing the work function and aligning the energy levels with perovskite. This leads to improved charge and hole collection efficiency, resulting in increased photovoltaic conversion efficiency. Furthermore, the modified carbon electrode-based perovskite solar cells exhibit exceptional stability, maintaining high efficiency even without encapsulation.

CARBON (2024)

Article Chemistry, Physical

High-performance epoxy nanocomposites via constructing a rigid-flexible interface with graphene oxide functionalized by polyetheramine and f-SiO2

Guodong Shi, Jian Song, Xiaoxiao Tian, Tongtong Liu, Zhanjun Wu

Summary: This study demonstrates the improvement of mechanical properties and reduction of coefficient of thermal expansion (CTE) in graphene oxide (GO)/epoxy (EP) nanocomposites by enhancing the interface between GO and EP through functionalization and incorporating rigid-flexible interphases. The results reveal that the SiO2-PEA-GO hybrid exhibits better strengthening and toughening effects, as well as lower CTE, compared to the PEA-GO hybrid due to the presence of rigid-flexible interfaces with higher bonding strength and better energy dissipation mechanisms. Additionally, the nanocomposites with longer polyetheramine (PEA) molecules in the rigid-flexible interphases demonstrate higher strength and toughness, while maintaining a lower CTE. This work provides a promising strategy for constructing adjustable flexible-rigid interfacial structures and offers potential in developing GO/EP nanocomposites with high mechanical properties and low CTE.

CARBON (2024)

Article Chemistry, Physical

A facile route to the synthesis of carbon replicas cast from narrow-mesoporous matrices

Rafal Janus, Sebastian Jarczewski, Jacek Jagiello, Piotr Natkanski, Mariusz Wadrzyk, Marek Lewandowski, Marek Michalik, Piotr Kustrowski

Summary: In this study, a facile procedure for the synthesis of CMK-1 and CMK-2 carbon replicas was developed. The method utilizes basic laboratory equipment and a renewable carbon source, and operates under mild conditions. The resulting carbon mesostructures exhibit exquisite replication fidelity and structural homogeneity, making them suitable for applications in various fields.

CARBON (2024)

Article Chemistry, Physical

Microstructure and energetic characteristics of direct ink printed polymer-free rGO/nanothermite aerogel

Anqi Wang, Connor J. MacRobbie, Alex Baranovsky, Jean-Pierre Hickey, John Z. Wen

Summary: In this study, a novel polymer-free nanothermite aerogel with a wide range of nanoparticle loading was fabricated via a new additive manufacturing process. The SEM images showed a unique porous structure formed by extra thin rGO sheets, wrapping individual nanothermite clusters. The DSC-TGA results and high-speed combustion videos confirmed the enhanced energetic performance of the printed specimen.

CARBON (2024)

Article Chemistry, Physical

A solar-driven interfacial evaporator for seawater desalination based on mussel-inspired superhydrophobic composite coating

Wanze Wu, Misheng Zhao, Shiwei Miao, Xiaoyan Li, Yongzhong Wu, Xiao Gong, Hangxiang Wang

Summary: Superhydrophobic solar-driven interfacial evaporator is an energy-efficient technology for seawater desalination, which is easily fabricated using robust photothermal superhydrophobic coating and substrate. The created bifunctional coating on the melamine sponge substrate shows stable and highly efficient photothermal and superhydrophobic performance for seawater desalination. This superhydrophobic solar-driven interfacial evaporator is expected to have wide applications in seawater desalination.

CARBON (2024)

Article Chemistry, Physical

Bead-like flexible ZIF-67-derived Co@Carbon composite nanofibre mat for wideband microwave absorption in C-band

Zichen Xiang, Zhi Song, Tiansheng Wang, Menghang Feng, Yijing Zhao, Qitu Zhang, Yi Hou, Lixi Wang

Summary: This study presents a co-electrospinning synthesis strategy to fabricate lightweight and porous Co@C composite nanofibres with wideband microwave attenuation capacity. The addition of MOF-derived Co additives enhances the low-frequency absorption performance.

CARBON (2024)

Article Chemistry, Physical

A perovskite-graphene device for X-ray detection

J. Snow, C. Olson, E. Torres, K. Shirley, E. Cazalas

Summary: This study investigates the use of a perovskite-based graphene field effect transistor (P-GFET) device for X-ray detection. The sensitivity and responsivity of the device were found to be influenced by factors such as X-ray tube voltage, current, and source-drain voltage. Simulation experiments were conducted to determine the dose rate and energy incident on the device during irradiation.

CARBON (2024)

Article Chemistry, Physical

Microporous carbon prepared by microwave pyrolysis of scrap tyres and the effect of K+ in its structure on xylene adsorption

Zuzana Jankovska, Lenka Matejova, Jonas Tokarsky, Pavlina Peikertova, Milan Dopita, Karolina Gorzolkova, Dominika Habermannova, Michal Vastyl, Jakub Belik

Summary: This study provides new insights into microwave-assisted pyrolysis of scrap tyres, demonstrating that it can produce microporous carbon black with potential application in xylene adsorption. Compared to conventional pyrolysis, microwave pyrolysis requires less time and energy while maintaining similar adsorption capacity.

CARBON (2024)

Article Chemistry, Physical

Ambipolar charge transfer of larger fullerenes enabled by the modulated surface potential of h-BN/Rh(111)

Max Bommert, Bruno Schuler, Carlo A. Pignedoli, Roland Widmer, Oliver Groning

Summary: A detailed understanding of the interaction between molecules and two-dimensional materials is crucial for incorporating functional molecular films into next-generation 2D material-organic hybrid devices. This study compares the energy level alignment of different-sized fullerenes on a Moire superstructure and finds that C-84 fullerenes can be either neutral or negatively charged depending on slight variations of the electrostatic potential. This discovery suggests a new path to achieve ambipolar charge transfer without overcoming the electronic gap of fullerenes.

CARBON (2024)

Article Chemistry, Physical

Flexible SiO2/rGO aerogel for wide-angle broadband microwave absorption

Yuanjing Cheng, Xianxian Sun, Ye Yuan, Shuang Yang, Yuanhao Ning, Dan Wang, Weilong Yin, Yibin Li

Summary: The dual-structure aerogel (GS) consisting of flexible silica fibers and graphene honeycomb structures exhibits excellent resilience, flexibility, and reliability. It also shows remarkable wave absorbing performance, making it an ideal candidate for microwave absorption applications such as flexible electronics and aerospace.

CARBON (2024)

Article Chemistry, Physical

In situ self-adaptive growth of graphene coatings on hard substrates via competitive NiCo catalysis reaction

Shuyu Fan, Yinong Chen, Shu Xiao, Kejun Shi, Xinyu Meng, Songsheng Lin, Fenghua Su, Yifan Su, Paul K. Chu

Summary: Graphene coatings are promising solid lubrication materials due to their mechanical properties. This study presents a new method for in situ deposition of high-quality graphene coatings on hard substrates using NiCo solid solution and competitive reaction strategies. The graphene coating deposited on substrates with deep NiCo solid solution demonstrates superior low-friction and durability.

CARBON (2024)

Article Chemistry, Physical

Monodispersed semiconducting SWNTs significantly enhanced the thermoelectric performance of regioregular poly(3-dodecylthiophene) films

Mengdi Wang, Sanyin Qu, Yanling Chen, Qin Yao, Lidong Chen

Summary: The improved thermoelectric properties of conducting polymers are achieved by selectively capturing single-walled carbon nanotubes (SWNTs) in a conducting polymer film, leading to increased carrier mobility and reduced thermal conductivity. The resulting composite film exhibits significantly higher electrical conductivity and lower thermal conductivity compared to films with a mixture of SWNTs. This work provides a convenient and efficient method to enhance the thermoelectric properties of conducting polymers.

CARBON (2024)

Review Chemistry, Physical

Component optimization and microstructure design of carbon nanotube-based microwave absorbing materials: A review

Heng Wei, Weihua Li, Kareem Bachagha

Summary: This article reviews the research progress of carbon nanotube-based microwave absorbing materials (MAMs) in recent years, covering the fundamental theory, design strategies, synthesis methods, and future development directions.

CARBON (2024)

Article Chemistry, Physical

MXene-based polymer brushes decorated with small-sized Ag nanoparticles enabled high-performance lithium host for stable lithium metal battery

Chenguang Shi, Junlong Huang, Zongheng Cen, Tan Yi, Shaohong Liu, Ruowen Fu

Summary: This study developed a high-performance Li metal host material, which achieved dendrite-free Li deposition with a low nucleation overpotential and high Coulombic efficiencies through the combination of Ti3C2-g-PV4P sheets and Ag nanoparticles. The full cells assembled with the Li@host anode and LiFePO4 cathode exhibited high discharge capacity and excellent cycling stability, demonstrating a perspective design for future energy storage devices.

CARBON (2024)

Article Chemistry, Physical

A stable full cell having high energy density realized by using a three-dimensional current collector of carbon nanotubes and partial prelithiation of silicon monoxide

Tomotaro Mae, Kentaro Kaneko, Hiroki Sakurai, Suguru Noda

Summary: A new partial prelithiation method for SiO/C-CNT electrodes was developed, which showed reduced irreversible capacity and achieved high energy densities with good reversibility. The method allows for precise control of the degree of prelithiation and is applicable to various chemistries.

CARBON (2024)