4.6 Article

Antioxidant, Antidiabetic, Anticholinergic, and Antiglaucoma Effects of Magnofluorine

期刊

MOLECULES
卷 27, 期 18, 页码 -

出版社

MDPI
DOI: 10.3390/molecules27185902

关键词

Magnofluorine; phenolic compound; butyrylcholinesterase; antioxidant activity; carbonic anhydrase; acetylcholinesterase; alpha-glycosidase

资金

  1. TUBA
  2. King Saud University's Researchers Supporting Project [RSP-2022/59]

向作者/读者索取更多资源

The study demonstrates the antioxidant and enzyme inhibition effects of Magnofluorine, which can remove free radicals and potentially be used in the treatment of glaucoma and other global disorders.
Magnofluorine, a secondary metabolite commonly found in various plants, has pharmacological potential; however, its antioxidant and enzyme inhibition effects have not been investigated. We investigated the antioxidant potential of Magnofluorine using bioanalytical assays with 2,2-azinobis (3-ethylbenzothiazoline-6-sulfonic acid) (ABTS(center dot+)), N,N-dimethyl-p-phenylenediamine dihydrochloride (DMPD center dot+), and 1,1-diphenyl-2-picrylhydrazyl (DPPH center dot) scavenging abilities and K-3[Fe(CN)(6)] and Cu2+ reduction abilities. Further, we compared the effects of Magnofluorine and butylated hydroxytoluene (BHT), butylated hydroxyanisole (BHA), alpha-Tocopherol, and Trolox as positive antioxidant controls. According to the analysis results, Magnofluorine removed 1,1-diphenyl-2-picrylhydrazyl (DPPH) radicals with an IC50 value of 10.58 mu g/mL. The IC50 values of BHA, BHT, Trolox, and alpha-Tocopherol were 10.10 mu g/mL, 25.95 mu g/mL, 7.059 mu g/mL, and 11.31 mu g/mL, respectively. Our results indicated that the DPPH center dot scavenging effect of Magnofluorine was similar to that of BHA, close to that of Trolox, and better than that of BHT and alpha-tocopherol. The inhibition effect of Magnofluorine was examined against enzymes, such as acetylcholinesterase (AChE), alpha-glycosidase, butyrylcholinesterase (BChE), and human carbonic anhydrase II (hCA II), which are linked to global disorders, such as diabetes, Alzheimer's disease (AD), and glaucoma. Magnofluorine inhibited these metabolic enzymes with Ki values of 10.251.94, 5.991.79, 25.411.10, and 30.563.36 nM, respectively. Thus, Magnofluorine, which has been proven to be an antioxidant, antidiabetic, and anticholinergic in our study, can treat glaucoma. In addition, molecular docking was performed to understand the interactions between Magnofluorine and target enzymes BChE (D: 6T9P), hCA II (A:3HS4), AChE (B:4EY7), and alpha-glycosidase (C:5NN8). The results suggest that Magnofluorine may be an important compound in the transition from natural sources to industrial applications, especially new drugs.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据