4.7 Article

Dysregulated adipose tissue expansion and impaired adipogenesis in Prader-Willi syndrome children before obesity-onset

期刊

出版社

W B SAUNDERS CO-ELSEVIER INC
DOI: 10.1016/j.metabol.2022.155295

关键词

Prader-Willi syndrome; Adipogenesis; SNORD116; Adipose tissue expansion; Obesity

资金

  1. National Natural Science Foundation of China [81371215, 81670786]
  2. Key R&D Projects of Zhejiang Provincial Department of Science and Technology [2021 C03094]

向作者/读者索取更多资源

In Prader-Willi syndrome (PWS) patients, abnormal white adipose tissue (WAT) expansion and hypertrophy occur before the onset of obesity, accompanied by increased apoptosis. The adipogenic programs for both white and beige adipocytes are impaired in PWS patients, as evidenced by RNA-seq analysis. SNORD116 deficiency contributes to disrupted adipogenesis. These findings expand our understanding of the pathogenesis of PWS obesity and may contribute to the development of new therapeutic strategies.
Objective: Prader-Willi syndrome (PWS) is a rare genetic imprinting disorder resulting from the expression loss of genes on the paternally inherited chromosome 15q11-13. Early-onset life-thriving obesity and hyperphagia represent the clinical hallmarks of PWS. The noncoding RNA gene SNORD116 within the minimal PWS genetic lesion plays a critical role in the pathogenesis of the syndrome. Despite advancements in understanding the genetic basis for PWS, the pathophysiology of obesity development in PWS remains largely uncharacterized. Here, we aimed to investigate the signatures of adipose tissue development and expansion pathways and asso-ciated adipose biology in PWS children without obesity-onset at an early stage, mainly from the perspective of the adipogenesis process, and further elucidate the underlying molecular mechanisms. Methods: We collected inguinal (subcutaneous) white adipose tissues (ingWATs) from phase 1 PWS and healthy children with normal weight aged from 6 M to 2 Y. Adipose morphology and histological characteristics were assessed. Primary adipose stromal vascular fractions (SVFs) were isolated, cultured in vitro, and used to deter-mine the capacity and function of white and beige adipogenic differentiation. High-throughput RNA-sequencing (RNA-seq) was performed in adipose-derived mesenchymal stem cells (AdMSCs) to analyze transcriptome sig-natures in PWS subjects. Transient repression of SNORD116 was conducted to evaluate its functional relevance in adipogenesis. The changes in alternative pre-mRNA splicing were investigated in PWS and SNORD116 deficient cells. Results: In phase 1 PWS children, impaired white adipose tissue (WAT) development and unusual fat expansion occurred long before obesity onset, which was characterized by the massive enlargement of adipocytes accompanied by increased apoptosis. White and beige adipogenesis programs were impaired and differentiated adipocyte functions were disturbed in PWS-derived SVFs, despite increased proliferation capacity, which were consistent with the results of RNA-seq analysis of PWS AdMSCs. We also experimentally validated disrupted beige adipogenesis in adipocytes with transient SNORD116 downregulation. The transcript and protein levels of PPAR gamma, the adipogenesis master regulator, were significantly lower in PWS than in control AdMSCs as well as in SNORD116 deficient AdMSCs/adipocytes than in scramble (Scr) cells, resulting in the inhibited adipogenic program. Additionally, through RNA-seq, we observed aberrant transcriptome-wide alterations in alternative RNA splicing patterns in PWS cells mediated by SNORD116 loss and specifically identified a changed PRDM16 gene splicing profile in vitro. Conclusions: Imbalance in the WAT expansion pathway and developmental disruption are primary defects in PWS displaying aberrant adipocyte hypertrophy and impaired adipogenesis process, in which SNORD116 deficiency plays a part. Our findings suggest that dysregulated adiposity specificity existing at an early phase is a potential pathological mechanism exacerbating hyperphagic obesity onset in PWS. This mechanistic evidence on adipose biology in young PWS patients expands knowledge regarding the pathogenesis of PWS obesity and may aid in developing a new therapeutic strategy targeting disturbed adipogenesis and driving AT plasticity to combat abnormal adiposity and associated metabolic disorders for PWS patients.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
Article Endocrinology & Metabolism

Upper small intestine microbiome in obesity and related metabolic disorders: A new field of investigation

Emilie Steinbach, Davide Masi, Agnes Ribeiro, Patricia Serradas, Tiphaine Le Roy, Karine Clement

Summary: The study of the gut microbiome is crucial for understanding and treating metabolic diseases. While research on the fecal microbiome has provided valuable insights, relying solely on this may not be enough to draw comprehensive conclusions. The microbiome in the proximal part of the small intestine may play a significant role in metabolic regulation, but further exploration is needed due to limited accessibility.

METABOLISM-CLINICAL AND EXPERIMENTAL (2024)

Article Endocrinology & Metabolism

Transcriptional regulation of amino acid metabolism by KDM2B, in the context of ncPRC1.1 and in concert with MYC and ATF4

Evangelia Chavdoula, Vollter Anastas, Alessandro La Ferlita, Julian Aldana, Giuseppe Carota, Mariarita Spampinato, Burak Soysal, Ilaria Cosentini, Sameer Parashar, Anuvrat Sircar, Giovanni Nigita, Lalit Sehgal, Michael A. Freitas, Philip N. Tsichlis

Summary: This study reveals the important role of KDM2B in triple-negative breast cancer (TNBC). KDM2B affects cellular resistance to oxidative stress by regulating a network of genes and metabolic enzymes, in collaboration with ATF4 and MYC. Additionally, high expression of KDM2B is associated with poor prognosis in patients.

METABOLISM-CLINICAL AND EXPERIMENTAL (2024)

Article Endocrinology & Metabolism

Statin therapy in individuals with intermediate cardiovascular risk

Joongmin Kim, Hyeongsoo Kim, Sang Hyun Park, Yura Kang, Kyungdo Han, Sang-Hak Lee

Summary: This study aimed to investigate the optimal LDL-C level after statin therapy in individuals with intermediate cardiovascular risk. The results showed that achieving LDL-C levels <120 mg/dL after statin therapy could lower the event risk.

METABOLISM-CLINICAL AND EXPERIMENTAL (2024)

Review Endocrinology & Metabolism

Glucocorticoids and intrauterine programming of nonalcoholic fatty liver disease

Ze Chen, Li -Ping Xia, Lang Shen, Dan Xu, Yu Guo, Hui Wang

Summary: Accumulating evidence suggests that NAFLD has an intrauterine origin, with adverse prenatal environments and glucocorticoid exposure playing a crucial role in the developmental programming of fetal hepatic lipid metabolism. The offspring's glucocorticoid-insulin-like growth factor 1 (GC-IGF1) axis is programmed in utero, leading to postnatal catch-up growth and disrupted glucose and lipid metabolism, increasing susceptibility to NAFLD. Mismatch between intrauterine and postnatal environments can further disturb the programmed endocrine axes and accelerate the onset of NAFLD.

METABOLISM-CLINICAL AND EXPERIMENTAL (2024)

Article Endocrinology & Metabolism

CCDC92 deficiency ameliorates podocyte lipotoxicity in diabetic kidney disease

Fuwen Zuo, Youzhao Wang, Xinlei Xu, Ruihao Ding, Wei Tang, Yu Sun, Xiaojie Wang, Yan Zhang, Jichao Wu, Yusheng Xie, Min Liu, Ziying Wang, Fan Yi

Summary: This study investigates the role of CCDC92 in the pathogenesis of diabetic kidney disease (DKD). The expression of CCDC92 was found to increase in kidney biopsies from patients with DKD and was correlated with glomerular lipid accumulation. Animal studies further confirmed the induction of CCDC92 in the kidney, particularly in podocytes, and the podocyte-specific deletion of Ccdc92 ameliorated podocyte injury and lipid deposition. CCDC92 was shown to promote podocyte lipotoxicity through ABCA1 signaling-mediated lipid homeostasis. Therefore, CCDC92 may serve as a potential biomarker of podocyte injury in DKD and targeting CCDC92 could be an innovative therapeutic strategy for DKD patients.

METABOLISM-CLINICAL AND EXPERIMENTAL (2024)

Review Endocrinology & Metabolism

Brown adipose tissue-derived metabolites and their role in regulating metabolism

Khanyisani Ziqubu, Phiwayinkosi Dludla, Sihle E. Mabhida, Babalwa U. Jack, Susanne Keipert, Martin Jastroch, Sithandiwe E. Mazibuko-Mbeje

Summary: The discovery and revival of brown adipose tissue (BAT) in adult humans have opened up new possibilities for treating obesity and metabolic diseases. BAT not only plays a role in generating heat, but also secretes signaling molecules known as batokines, which regulate overall metabolism. This review highlights the importance of BAT-derived metabolites in controlling thermogenesis, substrate metabolism, and other biological processes, as well as their potential to alleviate obesity and related metabolic complications.

METABOLISM-CLINICAL AND EXPERIMENTAL (2024)