4.7 Article

Ultrasensitive hydrogel grating detector for real-time continuous-flow detection of trace threat Pb2+

期刊

JOURNAL OF HAZARDOUS MATERIALS
卷 443, 期 -, 页码 -

出版社

ELSEVIER
DOI: 10.1016/j.jhazmat.2022.130289

关键词

Hydrogel gratings; Stimuli-responsive hydrogels; Host-guest complexes; Real-time detection; Continuous-flow detection

向作者/读者索取更多资源

This study reports on a micro-structured smart hydrogel grating for real-time detection of trace Pb2+ in continuous flow. The hydrogel grating can change its height through selective host-guest complexation with Pb2+, allowing ultra-sensitive and selective detection. This high-performance hydrogel grating detector opens new areas for creating advanced smart detectors in analytical science.
Ultrasensitive real-time detection of trace Pb2+ in continuous flow is vital to effectively and timely eliminate the potential hazards to ecosystem health and sustainability. This work reports on a micro-structured smart hydrogel grating with ultra-sensitivity, high selectivity, good transparency and mechanical property for real-time detection of Pb2+ in continuous flow. The hydrogel grating possesses uniform surface relief microstructures with periodic nano-height ridges made of poly(acrylamide-co-benzo-18-crown-6-acrylamide) networks that crosslinked by tetra-arm star poly(ethylene glycol)acrylamide. The hydrogel grating with good optical transparency and mechanical property can change its height via selective host-guest complexation with Pb2+ to output a changed diffraction efficiency. Meanwhile, the periodic nano-ridges with large specific area benefit the contact with Pb2+ for fast Pb2+-induced height change. Thus, with such rationally designed molecular structures and surface relief microstructures, the hydrogel grating integrated in a glass-based mini-chip allows real-time detection of Pb2+ in continuous flow with ultra-sensitivity and high selectivity. The hydrogel grating detector can achieve ultralow detection limit (10-9 M Pb2+), fast response (2 min), and selective detection of Pb2+ from dozens of interfering ions even with high concentrations. This high-performance hydrogel grating detector is general and can be extended to detect many analytes due to the wide choice of responsive hydrogels, thus opening new areas for creating advanced smart detectors in analytical science.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据