4.4 Article

Stormwater drives seasonal geochemical processes beneath an infiltration basin

期刊

JOURNAL OF ENVIRONMENTAL QUALITY
卷 51, 期 6, 页码 1198-1210

出版社

WILEY
DOI: 10.1002/jeq2.20416

关键词

-

资金

  1. Delaware Department of Transportation
  2. University of Delaware Water Resources Center fellowship

向作者/读者索取更多资源

The study reveals the impact of deicing salt from stormwater infiltration on groundwater chemistry and transport processes. It emphasizes the importance of considering well screen length, placement and depth, and frequency of observations when designing a monitoring network.
Deicing salt is an important component of road safety during winter storms. Stormwater infiltration best management practices aim to prevent the salt from polluting streams and waterways, but this may shift pollutants to groundwater resources. In response to limited field studies investigating groundwater quality impacts caused by input of salt from stormwater infiltration best management practices, we monitored water levels and quality of groundwater at various depths in an unconfined aquifer around a stormwater infiltration basin using in situ sensors coupled with grab sampling. Our observations revealed differences in groundwater chemistry with depth in the aquifer and processes that were driven by the seasonal changes in the chemistry of stormwater (salt-impacted in winter and fresh in non-winter) recharging the aquifer. Water-matrix interactions in the vadose zone beneath the basin affected the transport of sodium (Na) into groundwater following non-winter recharge. Sodium movement through the aquifer was delayed relative to chloride (Cl), indicating a longer residence time of Na in the vadose zone. Radium (Ra) concentrations were correlated with Cl concentrations, suggesting salt-impacted recharge caused desorption of Ra into groundwater because of increased salinity. Stormwater-influenced groundwater followed a preferential flow path due to heterogeneity of the aquifer materials, and water chemistry varied with time and location along the flow path. These results highlight the importance of well screen length, placement and depth, and frequency of observations when designing a monitoring network.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据