4.2 Article

Attachment of Extracellular Metabolic Products of Lysinibacillus sp. DRG3 on Sand Surface under Variable Flow Velocities and Bioprocesses

期刊

JOURNAL OF ENVIRONMENTAL ENGINEERING
卷 148, 期 11, 页码 -

出版社

ASCE-AMER SOC CIVIL ENGINEERS
DOI: 10.1061/(ASCE)EE.1943-7870.0002072

关键词

Extracellular polymeric substances (EPS); Calcite; Hydrophobic interaction; Electrostatic interaction; Hydrogen bonding; Microbially mediated soil stabilization

向作者/读者索取更多资源

The study found that microbial metabolic products can help enhance soil aggregation, playing an important role in preventing soil erosion. Investigating the attachment mechanisms of extracellular polymeric substances produced by microbes on sand surfaces and their impact on the soil environment provides valuable insights for achieving microbially mediated soil stabilization.
The efficacy of microbially mediated stabilization of soil mass depends on soil aggregation and further depends on the complex interplay of environmental parameters, microbial extracellular metabolic products, and surface characteristics of soil particles. Failures of flood control dikes or similar structures often culminate from minor erosion of soil particles initiated by groundwater seepage. Although the introduction of microbial metabolic products in controlling soil erosion has been studied by researchers, the influence of slow fluvial activities on the composition, characteristics, and their impacts on attachment mechanisms of extracellular polymeric substances (EPS) on soil surfaces have remained unexplored. Impacts of slow fluvial activities on the amount and chemical composition of EPS produced by Lysinibacillus sp. DRG3, a nonpathogenic soil bacterium, and the attachment mechanisms of the EPS produced under noncalcifying, nonureolytic, and ureolytic calcifying bioprocesses on the sand surfaces were investigated. DRG3-inoculated specimens were incubated in the presence of steady circulation of aqueous media containing minimal concentrations of minerals and carbon and nitrogen sources to simulate groundwater movements through soil. Quantity, compactness, continuity, and viscosity of EPS and the amounts of carbohydrate, protein, lipid, DNA, and RNA found in EPS increased with circulation velocity and incubation duration. EPS were found to attach to sand through electrostatic interaction and hydrogen bonding. Internally, EPS components interacted with each other through electrostatic interaction, hydrogen bonding, and hydrophobic interaction. Electrostatic interaction appeared to weaken with increasing media circulation intensity and alkalinity. In contrast, EPS production and hydrogen bonding intensified under increased media circulation. Results of this investigation suggest microbe-mediated soil aggregation becomes stronger and more efficient under slow media circulation and are expected to have implications on microbially mediated soil stabilization, particularly in addressing soil erosion. This study provides useful insights for successful field implementation of biomediated soil stabilization. Work presented herein also demonstrates a role for microbial activities found in subterranean environments in strengthening an existing sand deposit.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.2
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据