4.7 Article

Deep learning-based heterogeneous strategy for customizing responses of lattice structures

期刊

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.ijmecsci.2022.107531

关键词

Heterogeneous lattice structure; Artificial neural network; Mechanical behavior; Inverse design; Additive manufacturing

资金

  1. National Natural Science Foundation of China [11972056, 12172092, 12002049]
  2. Beijing Institute of Technology Research Fund Program for Young Scholars [XSQD-202102005]
  3. Key Laboratory of Computational Physics Grant [HX02021-24]
  4. project of State Key Labo-ratory of Explosion Science and Technology [QNKT22-10]
  5. opening project of MOE Key Laboratory of Impact and Safety Engineering (Ningbo University) [CJ202103]
  6. opening project of State Key Laboratory for strength and vibration of mechanical structures [SV2021-KF-03]

向作者/读者索取更多资源

A deep learning-based strategy is proposed for the design of heterogeneous lattice structures. Octet-truss and rhombic dodecahedron cells are utilized to create the heterogeneous lattice structures, which exhibit various target performances and are experimentally validated.
Designing lattice structures with tunable mechanical behavior for multi-functional applications is of great sig-nificance. However, the inverse design of lattice structure for the specific requirement is still challenging due to the complex nonlinearity between the lattice configuration and its mechanical behavior. Herein, a deep learning -based heterogeneous strategy is proposed to design the heterogeneous lattice structure with a customized target response. Heterogeneous lattice structures comprised of octet-truss and rhombic dodecahedron cells are designed and fabricated by stereolithography using resin. Mechanical properties of heterogeneous lattice structures are determined by quasi-static compressive experiment and finite element analysis. The nominal stress-strain curves of independent heterogeneous lattice structures are calculated employing the finite element model. Based on these data, an artificial neural network is trained, validated, and tested. Influences of octet-truss cell number along the loading direction as well as interface number on the mechanical properties of lattice specimens are numerically examined. With the aid of the well-trained artificial neural network, the heterogeneous lattice structures with various specific target performances are successfully achieved, which are also experimentally verified. The results show that the heterogeneous lattice structures are more suitable for energy absorption than monolithic octet-truss and rhombic dodecahedron lattice structures. The prediction of finite element analysis can be reproduced by an artificial neural network effectively and precisely. The present strategy broadens the design space of lattice structures and provides a novel approach for designing the lattice structure with a specific response.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据