4.8 Article

Anisotropic and outstanding mechanical, thermal conduction, optical, and piezoelectric responses in a novel semiconducting BCN monolayer confirmed by first-principles and machine learning

期刊

CARBON
卷 200, 期 -, 页码 500-509

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.carbon.2022.08.077

关键词

h-BCN; Piezoelectric; Semiconductor; Machine -learning; Thermal conductivity

资金

  1. Deutsche For-schungsgemeinschaft (DFG, German Reuter Foundation) [EXC 2122, 390833453]
  2. Persian Gulf Uni-versity Research Council, Iran
  3. Russian Science Foundation [18-13-00479]
  4. BAGEP Award of the Science Academy
  5. Sevinc-Erdal Inonu Foundation

向作者/读者索取更多资源

Graphene-like BCN nanomembranes made of boron, carbon, and nitrogen elements exhibit outstanding physical properties, including different electronic natures, high piezoelectricity, and thermal and mechanical stability.
Graphene-like nanomembranes made of the neighboring elements of boron, carbon and nitrogen elements, are well-known of showing outstanding physical properties. Herein, with the aid of density functional theory (DFT) calculations, various atomic configurations of the graphene-like BCN nanosheets are investigated. DFT results reveal that depending on the atomic arrangement, the BCN monolayers may display semimetallic Dirac cone or semiconducting electronic nature. BCN nanosheets are also found to exhibit high piezoelectricity and carrier mobilities with considerable in-plane anisotropy, depending on the atomic arrangement. For the predicted most stable BCN monolayer, thermal and mechanical properties are explored using machine learning interatomic potentials. The room temperature tensile strength and lattice thermal conductivity of the most stable BCN monolayer are estimated to be orientation-dependent and remarkably high, over 78 GPa and 290 W/m.K, respectively. In addition, the thermal expansion coefficient of the monolayer BCN at room temperature is esti-mated to be-3.2 x 10-6 K-1, which is close to that of the graphene. The piezoelectric response of the herein proposed BCN lattice is also predicted to be close to that of the h-BN monolayer. Presented results highlight outstanding physics of the BCN nanosheets.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据