4.7 Article

Peroxydisulfate activation using B-doped biochar for the degradation of oxytetracycline in water

期刊

APPLIED SURFACE SCIENCE
卷 599, 期 -, 页码 -

出版社

ELSEVIER
DOI: 10.1016/j.apsusc.2022.153917

关键词

Boron-doped biochar; Free radical; Singlet oxygen; Degradation; Carbonyl

资金

  1. National Key Research and Development Program of China [2018YFC0408000, 2018YFC0408004]

向作者/读者索取更多资源

In this study, B-doped biochar (BBC) materials with different B contents were prepared and used for the adsorption/degradation of oxytetracycline (OTC) through the activation of peroxydisulfate (PDS). The catalytic activity of BBC was improved to different degrees compared with that of pristine BC owing to enhanced OTC adsorption and PDS activation. Using free-radical-quenching experiments, two main pathways for OTC degradation were identified.
In the present study, B-doped biochar (BBC) materials with different B contents were prepared and used for the adsorption/degradation of oxytetracycline (OTC) through the activation of peroxydisulfate (PDS). The catalytic activity of BBC was improved to different degrees compared with that of pristine BC owing to enhanced OTC adsorption and PDS activation. Furthermore, the best adsorption and degradation achieved in this study was when the ratio of boric acid to biochar was 2:1, and we defined it as BBC2. The degradation rate of OTC (20 mg/L) after 120 min was increased to 94% by adding BBC2 and PDS. Furthermore, B-doping increased the BC pore size and introduced Lewis-acidic sites to its surface for PDS activation. The effects of PDS concentration, initial pH, and catalyst dosage on the removal of OTC were also evaluated. Using free-radical-quenching experiments, two main pathways for OTC degradation were identified, i.e., that via radicals on the BBC surface and that via non-radicals (O-1(2)) in solution. B atom doping positively charged the adjacent C atoms, thus allowing direct electron transfer with S2O82- and facilitating the generation of O-1(2). Furthermore, the C=O groups generated upon BBC activation also generate O-1(2) in a similar manner. Finally, nine OTC degradation products were identified and two possible degradation pathways were proposed.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据