4.8 Article

Maximizing the synergistic effect between Pt0 and Pt?+ in a confined Pt-based catalyst for durable hydrogen production

期刊

APPLIED CATALYSIS B-ENVIRONMENTAL
卷 316, 期 -, 页码 -

出版社

ELSEVIER
DOI: 10.1016/j.apcatb.2022.121669

关键词

Methanol steam reforming; Hydrogen production; Metal@zeolite catalyst; K promoter; Synergistic effect

资金

  1. National Natural Science Foundation of China [21776296, 21905291, 22108289]
  2. Strategic Priority Research Program of the Chinese Academy of Sciences [XDA21090201]
  3. Shanghai Sailing Program [19YF1453000]
  4. Shanghai Institute of Cleantech Innovation [CR190904, CR190905]

向作者/读者索取更多资源

In this study, an efficient K-modified Pt catalyst confined within silicate-1 zeolite was developed for methanol steam reforming. The Pt-K@S-1 catalyst exhibited a synergistic effect between Pt0 and Pt delta+ species, suppressing the formation of CO and boosting the production of H2.
Methanol is a suitable raw material for in situ hydrogen generation by steam reforming that enables the safe storage and transportation of hydrogen. Pt-based catalysts have been considered promising and effective for methanol steam reforming but suffer from deactivation by metal sintering. In this study, we developed an efficient K-modified Pt catalyst confined within silicate-1 zeolite with a high activity and unprecedented stability for methanol steam reforming. Owing to the confinement effect, the K-promoted Pt@S-1 catalyst remained stable for more than 50 h. The combination of TPSR-MS and DFT calculations revealed that the Pt-K@S-1 catalyst exhibited a synergistic effect between the Pt0 and Pt delta+ species. The cleavage of the O-H bond in CH3OH was activated over Pt0 sites to produce HCOOCH3, whereas Pt delta+ sites promoted the hydrolysis of HCOOCH3 to HCOOH and ultimately CO2 and H2, thus suppressing the formation of CO and boosting H2 production.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

Article Chemistry, Physical

Direct CO2 hydrogenation to ethanol over supported Co2C catalysts: Studies on support effects and mechanism

Shunan Zhang, Xiaofang Liu, Zilong Shao, Hui Wang, Yuhan Sun

JOURNAL OF CATALYSIS (2020)

Review Chemistry, Applied

A Short Review of Recent Advances in Direct CO2 Hydrogenation to Alcohols

Shunan Zhang, Zhaoxuan Wu, Xiufang Liu, Kaimin Hua, Zilong Shao, Baiyin Wei, Chaojie Huang, Hui Wang, Yuhan Sun

Summary: The conversion of CO2 with hydrogen into value-added chemicals is a promising approach to addressing global climate change. Current research focuses on the direct hydrogenation of CO2 to produce methanol and higher alcohols, with a need for further advancements in catalyst design and mechanistic investigation.

TOPICS IN CATALYSIS (2021)

Article Chemistry, Physical

Tuning the interaction between Na and Co2C to promote selective CO2 hydrogenation to ethanol

Shunan Zhang, Zhaoxuan Wu, Xiaofang Liu, Zilong Shao, Lin Xia, Liangshu Zhong, Hui Wang, Yuhan Sun

Summary: Stable Na-Co2C active sites were obtained by enhancing the interaction between Na and Co species, leading to improved efficiency in CO2 hydrogenation to ethanol.

APPLIED CATALYSIS B-ENVIRONMENTAL (2021)

Article Chemistry, Physical

CO2 Hydrogenation to Methanol over PdZnZr Solid Solution: Effects of the PdZn Alloy and Oxygen Vacancy

Chaojie Huang, Zhaoxuan Wu, Hu Luo, Shunan Zhang, Zilong Shao, Hui Wang, Yuhan Sun

Summary: The study successfully improved the performance of CO2 hydrogenation at high temperature using a Pd/ZnZr catalyst, achieving high methanol selectivity and yield.

ACS APPLIED ENERGY MATERIALS (2021)

Article Chemistry, Physical

Morphological Modulation of Co2C by Surface-Adsorbed Species for Highly Effective Low-Temperature CO2 Reduction

Shunan Zhang, Xiaofang Liu, Hu Luo, Zhaoxuan Wu, Baiyin Wei, Zilong Shao, Chaojie Huang, Kaimin Hua, Lin Xia, Jiong Li, Lei Liu, Weitong Ding, Hui Wang, Yuhan Sun

Summary: This study presents a mechanism for modulating the morphologies of transition metal carbides (TMCs) in gas-solid reactions to improve their catalytic performance. By influencing the generation and amount of carboxylate species on hollow cubic Co3O4, the researchers were able to manipulate the prismatic and spherical Co2C nanocrystals. The Co2C nanoprisms showed excellent activity in reverse water gas shift (RWGS) and bridged RWGS and Fischer-Tropsch synthesis reactions, allowing for the direct synthesis of olefins and alcohols.

ACS CATALYSIS (2022)

Article Chemistry, Multidisciplinary

Converting Plastic Wastes to Naphtha for Closing the Plastic Loop

Lin Li, Hu Luo, Zilong Shao, Haozhi Zhou, Junwen Lu, Junjun Chen, Chaojie Huang, Shunan Zhang, Xiaofang Liu, Lin Xia, Jiong Li, Hui Wang, Yuhan Sun

Summary: We present a tandem catalytic conversion of LDPE into naphtha, the key feedstock for renewable plastic production, to address the serious environmental problem and resource waste of plastic pollution. The use of beta zeolite and silicalite-1-encapsulated Pt nanoparticles (Pt@S-1) enables a high naphtha yield of 89.5% and selectivity of 96.8% for C5-C9 hydrocarbons at 250 degrees C. This method utilizes acid sites to crack LDPE into olefin intermediates, which then encounter Pt nanoparticles within the channels of Pt@S-1 for hydrogenation and selective shipping of the resulting olefins, leading to the formation of narrow-distributed alkanes. Conceptually, this approach is suitable for closing the plastic loop, offering significant energy savings of 15% and a 30% reduction in greenhouse gas emissions.

JOURNAL OF THE AMERICAN CHEMICAL SOCIETY (2023)

Article Chemistry, Physical

Single-atom gold species within zeolite for efficient hydroformylation

Baiyin Wei, Xiaofang Liu, Qingyu Chang, Shenggang Li, Hu Luo, Kaimin Hua, Shunan Zhang, Junjun Chen, Zilong Shao, Chaojie Huang, Hui Wang, Yuhan Sun

Summary: Researchers have successfully designed an atomically dispersed Au catalyst confined in zeolite with excellent activity and selectivity for propene hydroformylation. Detailed characterizations and theoretical calculations indicate that the isolated Au atoms within the zeolite matrix are stabilized via oxygen-bridge bonds and function as the most efficient active sites.

CHEM CATALYSIS (2022)

Article Chemistry, Multidisciplinary

Achieving rhodium-like activity for olefin hydroformylation by electronic metal-support interaction of single atomic cobalt catalyst br

Baiyin Wei, Junjun Chen, Xiaofang Liu, Kaimin Hua, Lin Li, Shunan Zhang, Hu Luo, Hui Wang, Yuhan Sun

Summary: In this study, a rhodium-like single-atom cobalt catalyst was successfully developed to enhance the catalytic activity of olefin hydroformylation, surpassing heterogeneous cobalt-based catalysts and approaching the performance of rhodium catalysts. The catalyst showed excellent stability and retained high activity even after five repeated uses. The study revealed that electronic metal-support interaction played a pivotal role in improving the catalyst's performance.

CELL REPORTS PHYSICAL SCIENCE (2022)

Article Chemistry, Physical

Enhancing catalytic activity of zeolitic octahedral metal oxides through zinc incorporation for ethane oxidative dehydrogenation

Bolun Yu, Denan Li, Qianqian Zhu, Shufan Yao, Lifeng Zhang, Yanshuo Li, Zhenxin Zhang

Summary: This study successfully improved the catalytic activity of a zeolitic octahedral metal oxide by incorporating a single zinc species into its micropore. The zinc incorporation achieved a high ethane conversion rate and ethylene selectivity. Mechanism study showed that the isolated zinc site played a crucial role in activating oxygen and ethane, as well as stabilizing intermediates and transition states.

APPLIED CATALYSIS B-ENVIRONMENT AND ENERGY (2024)

Article Chemistry, Physical

Unveiling the synergistic effect between the metallic phase and bridging S species over MoS2 for highly efficient nitrogen fixation

Ruoqi Liu, Hao Fei, Jian Wang, Ting Guo, Fangyang Liu, Zhuangzhi Wu, Dezhi Wang

Summary: This work successfully synthesized a high-performing S-enriched MoS2 catalyst for electrocatalytic nitrogen reduction reaction (NRR), demonstrating high activity and selectivity. The synergistic effect of the 1T phase and bridging S22- species was shown to play a positive role in NRR performances, and DFT calculations revealed the mechanism behind the improved performance.

APPLIED CATALYSIS B-ENVIRONMENT AND ENERGY (2024)

Article Chemistry, Physical

Polymethylhydrosiloxane-modified gas-diffusion cathode for more efficient and durable H2O2 electrosynthesis in the context of water treatment

Pan Xia, Lele Zhao, Xi Chen, Zhihong Ye, Zhihong Zheng, Qiang He, Ignasi Sires

Summary: This study presents a modified gas-diffusion electrode (GDE) for highly efficient and stable H2O2 electrosynthesis by using trace polymethylhydrosiloxane (PMHS). DFT calculations provide an in-depth understanding of the roles of PMHS functional groups.

APPLIED CATALYSIS B-ENVIRONMENT AND ENERGY (2024)

Article Chemistry, Physical

Boron-doped rGO electrocatalyst for high effective generation of hydrogen peroxide: Mechanism and effect of oxygen-enriched air

Kwangchol Ri, Songsik Pak, Dunyu Sun, Qiang Zhong, Shaogui Yang, Songil Sin, Leliang Wu, Yue Sun, Hui Cao, Chunxiao Han, Chenmin Xu, Yazi Liu, Huan He, Shiyin Li, Cheng Sun

Summary: Different B-doped rGO catalysts were synthesized and their 2e- oxygen reduction reaction (ORR) performance was investigated. It was found that the 2e- ORR selectivity of B-doped rGO was influenced by the B content and oxygen mass transfer conditions. The synthesized catalyst exhibited high 2e- ORR selectivity and was capable of degrading organic pollutants continuously.

APPLIED CATALYSIS B-ENVIRONMENT AND ENERGY (2024)

Article Chemistry, Physical

Oxygen vacancies-modified S-scheme heterojunction of Bi-doped La2Ti2O7 and La-doped Bi4Ti3O12 to improve the NO gas removal avoiding NO2 product

Li Lv, Lin Lei, Qi-Wen Chen, Cheng-Li Yin, Huiqing Fan, Jian-Ping Zhou

Summary: Monoclinic phase La2Ti2O7 and orthorhombic phase Bi4Ti3O12 are widely used in photocatalysis due to their layered crystal structure. The electronic structures of these phases play a crucial role in their photocatalytic activity. Heat treatment in a nitrogen atmosphere introduces more oxygen vacancies into the S-scheme heterojunction, leading to enhanced NO removal efficiency.

APPLIED CATALYSIS B-ENVIRONMENT AND ENERGY (2024)

Article Chemistry, Physical

Understanding the synergistic effect of hydrated electron generation from argon plasma catalysis over Bi2O3/CeO2 for perfluorooctanoic acid dehalogenation: Mechanism and DFT study

Choe Earn Choong, Minhee Kim, Jun Sup Lim, Young June Hong, Geon Joon Lee, Keun Hwa Chae, In Wook Nah, Yeomin Yoon, Eun Ha Choi, Min Jang

Summary: In this study, the synergistic effect between argon-plasma-system (AP) and catalysts in promoting the production of reactive species for water remediation was investigated. By altering the oxygen vacancies concentration of CeO2/Bi2O3 catalyst, the production of hydrated electrons was stimulated for PFOA removal. The results showed that the built-in electric field in the Bi/Ce0.43 interface enhanced electron migration and eaq- generation, leading to improved PFOA removal efficiency.

APPLIED CATALYSIS B-ENVIRONMENT AND ENERGY (2024)

Article Chemistry, Physical

Ru clusters anchored on N-doped porous carbon-alumina matrix as efficient catalyst toward primary amines via reductive amination

Yushan Wu, Di Xu, Yanfei Xu, Xin Tian, Mingyue Ding

Summary: Efficient synthesis of primary amines from carbonyl compounds was achieved via reductive amination using Ru@NC-Al2O3 as a catalyst, exhibiting high activity and selectivity under mild conditions.

APPLIED CATALYSIS B-ENVIRONMENT AND ENERGY (2024)

Article Chemistry, Physical

Efficient 1O2 production from H2O2 over lattice distortion controlled spinel ferrites

Yilan Jiang, Peifang Wang, Tingyue Chen, Keyi Gao, Yiran Xiong, Yin Lu, Dionysios D. Dionysiou, Dawei Wang

Summary: By controlling the content of Co and Ni in Co1-xNixFe2O4, the production of O-1(2) from H2O2 can be regulated. NiFe2O4, with the lowest lattice distortion degree, can efficiently produce O-1(2) as the dominant reactive oxygen species. The system also exhibits significant resistance to water matrix interference.

APPLIED CATALYSIS B-ENVIRONMENT AND ENERGY (2024)

Article Chemistry, Physical

Tailoring the Mo-N/Mo-O configuration in MoO2/Mo2N heterostructure for ampere-level current density hydrogen production

Shuai Feng, Donglian Li, Hao Dong, Song Xie, Yaping Miao, Xuming Zhang, Biao Gao, Paul K. Chu, Xiang Peng

Summary: In this study, MoO2/Mo2N heterostructures were prepared by regulating the coordination of Mo atoms. The electrocatalyst exhibits high current density and excellent stability for hydrogen evolution reaction.

APPLIED CATALYSIS B-ENVIRONMENT AND ENERGY (2024)

Article Chemistry, Physical

Spin state-tailored tetrahedral and octahedral cobalt centers on millimetric Co-Al oxide catalysts as dual sites for synergistic peroxymonosulfate activation

Jia-Cheng E. Yang, Min -Ping Zhu, Daqin Guan, Baoling Yuan, Darren Delai Sun, Chenghua Sun, Ming-Lai Fu

Summary: This study successfully modulated the electron configuration and spin state of millimetric metal catalysts by adjusting the support curvature radius. The electronic structure-oriented spin catalysis was found to affect the degradation of pollutants, providing new insights for the design and production of highly active, reusable, and stable catalysts.

APPLIED CATALYSIS B-ENVIRONMENT AND ENERGY (2024)

Article Chemistry, Physical

Cu nanocrystals coupled with poly (heptazine imide) for synergistically enhanced photocatalytic CH3SH elimination: Facet engineering strengthened electron pump effect

Tao Zhong, Su Tang, Wenbin Huang, Wei Liu, Huinan Zhao, Lingling Hu, Shuanghong Tian, Chun He

Summary: In this study, a highly efficient photocatalyst for the elimination of CH3SH was developed by engineering different crystal facets and coupling them with PHI. Cu (111)/PHI exhibited the highest elimination efficiency and showed good stability and reusability. The enhanced surface electron pump effect and effective adsorption mechanisms were revealed through comprehensive characterizations and DFT calculations.

APPLIED CATALYSIS B-ENVIRONMENT AND ENERGY (2024)

Article Chemistry, Physical

NiSn intermetallic nanoparticles with geometrically isolated Ni sites for selective C-O cleavage of furfural

Feifei Yang, Tianyu Zhang, Jiankang Zhao, Wei Zhou, Nicole J. Libretto, Jeffrey T. Miller

Summary: A Ni3Sn intermetallic nano particle was found to have geometrically isolated Ni sites that could selectively cleave C-O bonds in biomass derivatives. This nano particle showed high activity and selectivity towards 2-methylfuran, unlike Ni nanoparticles that produced other unwanted products derived from the aromatic rings.

APPLIED CATALYSIS B-ENVIRONMENTAL (2024)

Article Chemistry, Physical

Nickel-facilitated in-situ surface reconstruction on spinel Co3O4 for enhanced electrochemical nitrate reduction to ammonia

Lulu Qiao, Di Liu, Anquan Zhu, Jinxian Feng, Pengfei Zhou, Chunfa Liu, Kar Wei Ng, Hui Pan

Summary: This study reveals that surface evolution plays a crucial role in enhancing the electrocatalytic performance of transition metal oxides for electrochemical nitrate reduction reaction (e-NO3RR). Incorporating nickel into Co3O4 can promote surface reconstruction and improve the adsorption of intermediates and reduce energy barriers, leading to enhanced catalytic performance. The reconstructed cobalt-nickel hydroxides (CoyNi1_y(OH)2) on the catalyst's surface serve as the active phase.

APPLIED CATALYSIS B-ENVIRONMENTAL (2024)

Article Chemistry, Physical

Unraveling the discriminative mechanisms for peroxy activation via atomically dispersed Fe-N5 sites for tunable water decontamination

Xinyu Song, Yang Shi, Zelin Wu, Bingkun Huang, Xinhao Wang, Heng Zhang, Peng Zhou, Wen Liu, Zhicheng Pan, Zhaokun Xiong, Bo Lai

Summary: This study explores the discriminative activities and mechanisms for activation of O-O bond in peroxy compounds via single-atom catalysts (SACs) with higher coordination numbers (M-N5). The atomic catalyst (Fe-SAC) with Fe-N5 as the active center was constructed, effectively activating peroxymonosulfate (PMS), peroxydisulfate (PDS), and hydrogen peroxide (H2O2). The study demonstrates the degradation efficiencies of acyclovir are related to the O-O bond length in different peroxy compounds, and reveals the discriminative mechanisms for activation of O-O bond in different Fenton-like systems.

APPLIED CATALYSIS B-ENVIRONMENTAL (2024)

Article Chemistry, Physical

Fe-Mn oxycarbide anchored on N-doped carbon for enhanced Fenton-like catalysis: Importance of high-valent metal-oxo species and singlet oxygen

Yangzhuo He, Hong Qin, Ziwei Wang, Han Wang, Yuan Zhu, Chengyun Zhou, Ying Zeng, Yicheng Li, Piao Xu, Guangming Zeng

Summary: A dual-metal-organic framework (MOF) assisted strategy was proposed to construct a magnetic Fe-Mn oxycarbide anchored on N-doped carbon for peroxymonosulfate (PMS) activation. The FeMn@NC-800 catalyst exhibited superior activity with almost 100% degradation of sulfamethazine (SMZ) in 30 minutes. The study provided insights for the rational design of high-performance heterogeneous catalysts and proposed a novel nonradical-based catalytic oxidation for environmental cleaning.

APPLIED CATALYSIS B-ENVIRONMENTAL (2024)