4.7 Article

Revisiting the law of the wake in wall turbulence

期刊

JOURNAL OF FLUID MECHANICS
卷 811, 期 -, 页码 421-435

出版社

CAMBRIDGE UNIV PRESS
DOI: 10.1017/jfm.2016.788

关键词

turbulent boundary layers; turbulent flows

向作者/读者索取更多资源

The streamwise mean velocity profile in a turbulent boundary layer classically described as the sum of a log law extending all the way to the edge of the boundary layer and a wake function. While there is theoretical support for the log law, the wake function, defined as the deviation of the measured velocity profile from the log law, is essentially an empirical fit and has no real physical underpinning. Here, we present a new physically motivated formulation of the velocity profile in the outer region, and hence for the wake function. In our approach, the entire flow is represented by a two-state model consisting of an inertial self-similar region designated as 'pure wall flow state' (featuring a log-law velocity distribution) and a free stream state, which results in a jump in velocity at the interface separating the two. We show that the model provides excellent agreement with the available high Reynolds number mean velocity profiles if this interface is assumed to fluctuate randomly about a mean position with a Gaussian distribution. The new concept can also he extended to internal geometries in the same form, again confirmed by the data. Furthermore, adopting the same interface distribution in a two-state model for the streamwise turbulent intensities, with unchanged parameters, also yields a reliable and consistent prediction for the decline in the outer region of these profiles in all geometries considered. Finally, we discuss differences between our model interface and the turbulent/non-turbulent interface (TN'fl) in turbulent boundary layers. We physically interpret the two-state model as lumping the effects of internal shear layers and the TNT' into a single discontinuity at the interface.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据