4.3 Article

Insights into the Estimation of the Enhanced Thermal Conductivity of Phase Change Material-Containing Oxide Nanoparticles using Gaussian Process Regression Method

期刊

出版社

HINDAWI LTD
DOI: 10.1155/2022/7119336

关键词

-

向作者/读者索取更多资源

In this study, a Gaussian process regression method is proposed to predict the thermal conductivity of nano-PCM. The method is found to be more accurate compared to previous methods. The temperature of the nanofluid is identified as the most influential variable on the output.
Thermal conductivity (TC) of a phase change material (PCM) may be enhanced by distributing nanostructured materials (NSMs) termed nano-PCM. It is critical to accurately estimate the TC of nano-PCM to assess heat transfer during phase transition processes, namely, solidification and melting. Here, we propose Gaussian process regression (GPR) strategies involving four various kernel functions (KFs) (including exponential (E), squared exponential (SE), rational quadratic (RQ), and matern (M)) to predict TC of n-octadecane as a PCM. The accessible computational techniques indicate the accuracy of our proposed GPR model compared to the previously proposed methods. In this research, the foremost forecasting strategy has been considered as a GPR method. This model consists of the matern KF whose R-2 values of training and testing phases are 1 and 1, respectively. In the following, a sensitivity analysis (SA) is used to explore the effectiveness of variables in terms of outputs and shows that the temperature (T) of nanofluid (NF) is the most efficient input parameter. The work describes the physical properties of NFs and the parameters that should be determined to optimize their efficiency.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.3
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据