4.6 Article

Long-Distance Pollen Dispersal in Urban Green Roof and Ground-Level Habitats

期刊

FRONTIERS IN ECOLOGY AND EVOLUTION
卷 10, 期 -, 页码 -

出版社

FRONTIERS MEDIA SA
DOI: 10.3389/fevo.2022.790464

关键词

Amaranthaceae; Solanaceae; pollen dispersal; green roofs; urban habitats; curve fitting; PDF fitting

类别

资金

  1. Clare Boothe Luce Program Fellowship (Henry Luce Foundation)
  2. Fordham University's Louis Calder Center, Department of Biological Sciences, Graduate School of Arts and Sciences
  3. Fordham University's Louis Calder Center, Department of Biological Sciences, Graduate Student Association

向作者/读者索取更多资源

This study examined pollen dispersal patterns in urban habitats using curve fitting and PDF fitting methods. The results showed that long-distance pollen dispersal may not be as common as expected in urban areas, highlighting the importance of further research on comparing curve and PDF fitting for predicting pollen dispersal patterns.
Long-distance pollen dispersal is critical for gene flow in plant populations, yet pollen dispersal patterns in urban habitats such as green roofs have not been extensively studied. Pollen dispersal patterns typically are assessed either by fitting non-linear models to the relationship between the degree of pollen dispersal and distance to the pollen source (i.e., curve fitting), or by fitting probability density functions (PDFs) to pollen dispersal probability histograms (i.e., PDF fitting). Studies using curve fitting typically report exponential decay patterns in pollen dispersal. However, PDF fitting typically produces more fat-tailed distributions, suggesting the exponential decay may not be the best fitting model. Because the two approaches may yield conflicting results, we used both approaches to examine pollen dispersal patterns in the wind-pollinated Amaranthus tuberculatus and the insect-pollinated Solanum lycopersicum at two green roof and two ground-level sites in the New York (NY, United States) metropolitan area. For the curve fitting analyses, the exponential decay and inverse power curves provided good fits to pollen dispersal patterns across both green roof and ground-level sites for both species. Similar patterns were observed with the PDF fitting analyses, where the exponential or inverse Gaussian were the top PDF at most sites for both species. While the curve fitting results are consistent with other studies, the results differ from most studies using PDF fitting, where long-distance pollen dispersal is more common than we observed. These results highlight the need for further research to compare curve and PDF fitting for predicting pollen dispersal patterns. And, critically, while long-distance pollen dispersal may be an important component of overall pollen dispersal for A. tuberculatus and S. lycopersicum in both urban green roof and ground-level sites, our results suggest it potentially may occur to a lesser extent compared with plants in less-urban areas.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据