4.8 Article

Prussian blue and its analogues as cathode materials for Na-, K-, Mg-, Ca-, Zn- and Al-ion batteries

期刊

NANO ENERGY
卷 99, 期 -, 页码 -

出版社

ELSEVIER
DOI: 10.1016/j.nanoen.2022.107424

关键词

Prussian blue and its analogues; Cathodes; Low-cost metal-ion batteries; Aqueous and non-aqueous batteries

资金

  1. National Natural Science Foundation of China [21601122, 21671128, 51803116]
  2. Belt and Road Initiatives International Cooperation Project [20640770300]

向作者/读者索取更多资源

This paper comprehensively reviews the research progress of PB/PBAs-based cathode materials of metal-ion batteries, including synthesis methods, structural characteristics, electrochemical performance, and applications. The technical challenges are also analyzed, and future research directions are proposed.
Prussian blue and its analogs (PB/PBAs) are competitive candidates for cathode materials of rechargeable metalion batteries (monovalent metal such as Na and K and multivalent metal, e.g. Mg, Ca, Zn, and Al) due to their stable frame structures, tunable redox sites, and facile synthesis methods. This paper comprehensively reviews the research progress of PB/PBAs-based cathode materials of metal-ion batteries in terms of their synthesis, structural/composition characteristics, electrochemical performance, functional mechanisms, applications and recycling in electrical energy storage. For facilitating the research and development, some technical challenges are analyzed and future research directions are also proposed for overcoming the challenges toward their practical applications.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

Review Chemistry, Multidisciplinary

Antiperovskite Electrolytes for Solid-State Batteries

Wei Xia, Yang Zhao, Feipeng Zhao, Keegan Adair, Ruo Zhao, Shuai Li, Ruqiang Zou, Yusheng Zhao, Xueliang Sun

Summary: Solid-state batteries have attracted significant research attention in recent years due to their improved safety properties and potential for high-energy density. However, the stability of solid-state electrolytes remains a challenge. Recent progress has been made in exploring new materials, such as antiperovskites, which show promising properties in terms of ionic conductivity and electrochemical stability. The structural flexibility of antiperovskite electrolytes makes them excellent candidates for solid-state battery applications.

CHEMICAL REVIEWS (2022)

Article Pharmacology & Pharmacy

How to handle a delayed or missed dose of edoxaban in patients with non-valvular atrial fibrillation? A model-informed remedial strategy

Yi-wei Yin, Xiao-qin Liu, Jia-qin Gu, Zi-ran Li, Zheng Jiao

Summary: This study aimed to explore appropriate remedial dosing regimens for non-adherent edoxaban-treated NVAF patients through Monte Carlo simulation. The proposed remedial strategies differed from the current recommendations and were related to the delay time. PK/PD modelling and simulation are effective in developing and evaluating the remedial strategies of edoxaban.

BRITISH JOURNAL OF CLINICAL PHARMACOLOGY (2023)

Article Nanoscience & Nanotechnology

Ion Motor as a New Universal Strategy for the Boosting the Performance of Zn-Ion Batteries

Lulu Chai, Junqing Pan, Xiaoyang Zhu, Yanzhi Sun, Xiaoguang Liu, Wei Li, Jinjie Qian, Xifei Li, Xueliang Sun

Summary: This article introduces a new concept of ion motors, which can realize the directional driving and uniformity of the electrolyte, thereby solving the concentration polarization and dendrite problems in metal secondary batteries and flow batteries.

ACS APPLIED MATERIALS & INTERFACES (2022)

Article Chemistry, Physical

Spreading monoclinic boundary network between hexagonal primary grains for high performance Ni-rich cathode materials

Xing Xu, He Zhu, Yu Tang, Liguang Wang, Qinghua Zhang, Yang Ren, Si Lan, Lizhi Xiang, Jiyuan Jian, Hua Huo, Guo-Xing Chen, Lin Gu, Geping Yin, Xun-Li Wang, Xueliang Sun, Chunyu Du, Qi Liu

Summary: Knowledge of structure-performance relationship is crucial in material design. In this study, we improved the performance of a Ni-rich cathode material by building monoclinic surfaces and engineering octahedral ligand field. Our approach shows potential for widespread battery research.

NANO ENERGY (2022)

Article Chemistry, Multidisciplinary

Surface Defects Reinforced Polymer-Ceramic Interfacial Anchoring for High-Rate Flexible Solid-State Batteries

Yanda Fu, Kai Yang, Shida Xue, Weihan Li, Shiming Chen, Yongli Song, Zhibo Song, Wenguang Zhao, Yunlong Zhao, Feng Pan, Luyi Yang, Xueliang Sun

Summary: In this study, a composite solid electrolyte (OV-LLZTO/PEO) is prepared by introducing LLZTO with surface defects into PEO, which forms a firmly bonded polymer-ceramic interface. This electrolyte membrane exhibits high mechanical strength, reduced interfacial resistance, and improved Li+ conductivity. Solid-state full-cells employing OV-LLZTO/PEO demonstrate excellent rate capability, power density, and capacity retention.

ADVANCED FUNCTIONAL MATERIALS (2023)

Article Chemistry, Multidisciplinary

Fast Ion Transport in Li-Rich Alloy Anode for High-Energy-Density All Solid-State Lithium Metal Batteries

Xuejie Gao, Xiaofei Yang, Ming Jiang, Matthew Zheng, Yang Zhao, Ruying Li, Wenfeng Ren, Huan Huang, Runcang Sun, Jiantao Wang, Chandra Veer Singh, Xueliang Sun

Summary: All-solid-state Li batteries with solid-polymer electrolytes have potential for improved safety and high energy density. However, Li dendrite formation at the Li anode limits their development. This study proposes a Li-rich Li13In3 alloy electrode as a solution to suppress Li dendrite growth and achieve high-energy-density ASSLBs.

ADVANCED FUNCTIONAL MATERIALS (2023)

Article Chemistry, Multidisciplinary

Manipulating Charge-Transfer Kinetics of Lithium-Rich Layered Oxide Cathodes in Halide All-Solid-State Batteries

Ruizhi Yu, Changhong Wang, Hui Duan, Ming Jiang, Anbang Zhang, Adam Fraser, Jiaxuan Zuo, Yanlong Wu, Yipeng Sun, Yang Zhao, Jianwen Liang, Jiamin Fu, Sixu Deng, Zhimin Ren, Guohua Li, Huan Huang, Ruying Li, Ning Chen, Jiantao Wang, Xifei Li, Chandra Veer Singh, Xueliang Sun

Summary: Employing lithium-rich layered oxide (LLO) as the cathode in all-solid-state batteries (ASSBs) is desired for high energy density, but its poor kinetics due to low electronic conductivity and oxygen-redox-induced structural degradation hinders its application. This study enhances the charge transfer kinetics of LLO by constructing efficient electron transport networks within solid-state electrodes, reducing electron transfer resistance, and stabilizes the lattice oxygen of LLO through an infusion-plus-coating strategy, suppressing interfacial oxidation and structural degradation. The LLO-based ASSBs exhibit high discharge capacity and long cycle stability, providing important insights for the development of high-energy-density ASSBs.

ADVANCED MATERIALS (2023)

Article Chemistry, Multidisciplinary

Grain Boundary Electronic Insulation for High-Performance All-Solid-State Lithium Batteries

Xiaofei Yang, Xuejie Gao, Ming Jiang, Jing Luo, Jitong Yan, Jiamin Fu, Hui Duan, Shangqian Zhao, Yongfu Tang, Rong Yang, Ruying Li, Jiantao Wang, Huan Huang, Chandra Veer Singh, Xueliang Sun

Summary: This article introduces a method for achieving high-performance all-solid-state lithium batteries (ASSLBs) by using the grain-boundary electronic insulation (GBEI) strategy in sulfide electrolytes. The experimental results show that this strategy can effectively block electron transport and improve the cycling life and stability of the batteries.

ANGEWANDTE CHEMIE-INTERNATIONAL EDITION (2023)

Article Chemistry, Multidisciplinary

A Shuttle-Free Solid-State Cu-Li Battery Based on a Sandwich-Structured Electrolyte

Huimin Wang, Changhong Wang, Matthew Zheng, Jianneng Liang, Ming Yang, Xingyu Feng, Xiangzhong Ren, Denis Y. W. Yu, Yongliang Li, Xueliang Sun

Summary: A solid-state sandwich electrolyte is designed for Cu-Li batteries to overcome the limited solubility and shuttle effect of Cu ions. The solid-state Cu-Li battery demonstrates a high energy density and long-term cyclability.

ANGEWANDTE CHEMIE-INTERNATIONAL EDITION (2023)

Article Chemistry, Physical

Modulating the electronic spin state by constructing dual-metal atomic pairs for activating the dynamic site of oxygen reduction reaction

Shenghua Ye, Shuhua Xie, Yaqi Lei, Xiuyuan Yang, Jing Hu, Lirong Zheng, Zhida Chen, Yonghuan Fu, Xiangzhong Ren, Yongliang Li, Xiaoping Ouyang, Qianling Zhang, Jianhong Liu, Xueliang Sun

Summary: In this study, dual-metal atomic pairs of Mn-Fe binuclear sites anchored onto a graphite-like structure were constructed. The strong short-range electronic interaction between Mn and Fe sites in the binuclear structure transforms Fe sites to a high spin state, improving the oxygen reduction reaction performance of the Mn-Fe structure.

NANO RESEARCH (2023)

Article Chemistry, Multidisciplinary

Engineering Energy Level of FeN4 Sites via Dual-Atom Site Construction Toward Efficient Oxygen Reduction

Zhaoyan Luo, Xianliang Li, Tingyi Zhou, Yi Guan, Jing Luo, Lei Zhang, Xueliang Sun, Chuanxin He, Qianling Zhang, Yongliang Li, Xiangzhong Ren

Summary: A study finds that optimizing the electronic configuration of single-atom Fe-N-C catalysts by incorporating adjacent Ru-N-4 moieties can enhance their oxygen reduction reaction (ORR) performance, resulting in lower adsorption energy of ORR intermediates at Fe sites.
Article Chemistry, Physical

Spatially Distributed Lithiophilic Gradient in Low-Tortuosity 3D Hosts via Capillary Action for High-Performance Li Metal Anodes

Zixuan Zhu, Bo Liu, Yong Qian, Yanyan Fang, Xin Lei, Xinmiao Liu, Jianbin Zhou, Yitai Qian, Gongming Wang

Summary: Regulating lithium deposition/stripping behavior in 3D hosts is critical for stable lithium metal batteries. A low-tortuosity wood derived carbon (WDC) with gradient-distributed lithiophilic sites is constructed using biomimetic capillary action, as an efficient scaffold for lithium deposition/stripping. The WDC-GDAg electrode exhibits favorable Li plating behavior and high cycling stability, with high capacity retention and remarkable rate performance in full cells.

ADVANCED ENERGY MATERIALS (2023)

Article Nanoscience & Nanotechnology

Locally Saturated Ether-Based Electrolytes With Oxidative Stability For Li Metal Batteries Based on Li-Rich Cathodes

John Holoubek, Haodong Liu, Qizhang Yan, Zhaohui Wu, Bao Qiu, Minghao Zhang, Sicen Yu, Shen Wang, Jianbin Zhou, Tod A. Pascal, Jian Luo, Zhaoping Liu, Ying Shirley Meng, Ping Liu

Summary: This study demonstrates the reversible performance of a localized-high-concentration electrolyte (LHCE) based on ether solvents for Li||LMR batteries, improving the cycling performance and cathode-electrolyte interphase chemistry.

ACS APPLIED MATERIALS & INTERFACES (2023)

Article Chemistry, Physical

Modulating the electronic spin state by constructing dual-metal atomic pairs for activating the dynamic site of oxygen reduction reaction

Shenghua Ye, Shuhua Xie, Yaqi Lei, Xiuyuan Yang, Jing Hu, Lirong Zheng, Zhida Chen, Yonghuan Fu, Xiangzhong Ren, Yongliang Li, Xiaoping Ouyang, Qianling Zhang, Jianhong Liu, Xueliang Sun

Summary: In this study, dual-metal atomic pairs of Mn-Fe binuclear sites were constructed, which exhibited strong short-range electronic interaction and improved oxygen reduction reaction performance.

NANO RESEARCH (2023)

Article Chemistry, Physical

Depolarization of Li-rich Mn-based oxide via electrochemically active Prussian blue interface providing superior rate capability

Youchen Hao, Xifei Li, Wen Liu, Jingjing Wang, Hui Shan, Wenbin Li, Xingjiang Liu, Liangxu Lin, Xianyou Wang, Xueliang Sun

Summary: The introduction of a Prussian blue coating layer as a functionalized interface can overcome the limitations of high-rate cyclability of Li-rich Mn-based oxide, improving its rate performance and capacity retention.

CARBON ENERGY (2023)

Article Chemistry, Physical

Gamma glycine enhances efficiency of organic hybrid piezoelectric-triboelectric nanogenerators

Sirinya Ukasi, Paritta Jutapukti, Chiranicha Ninthub, Nattapong Pinpru, Phakkhananan Pakawanit, Wanwilai Vittayakorn, Satana Pongampai, Naratip Vittayakorn, Thitirat Charoonsuk

Summary: This study explores the enhancement of electrical output of flexible hybrid piezoelectric-triboelectric nanogenerators by incorporating gamma-glycine into fully organic composites. The research demonstrates the importance of optimized concentrations of gamma-glycine and chitosan in achieving superior performance. The study identifies the critical content of gamma-glycine that leads to the highest output signal, and provides theoretical explanations for this observation.

NANO ENERGY (2024)

Article Chemistry, Physical

Portable triboelectric-electromagnetic hybrid biomechanical energy harvester for driving various functional light-emitting diodes with a wide range of wavelengths

Yoonsang Ra, Yu-seop Kim, Seonmo Yang, Namgyu Kang, Gyuwon Oh, Chungyeon Cho, Sangmin Lee, Dongwhi Choi

Summary: In this study, a portable energy harvester (STEP) was proposed to drive various functional LEDs using biomechanical energy. The roles and functionalities of a triboelectric nanogenerator (TENG) and electromagnetic generator (EMG) in the hybrid energy harvester were experimentally demonstrated, and the necessity of hybridization for LED-involved devices was described. The STEP showed promising potential as an effective energy supply strategy for various functional LEDs in related industries.

NANO ENERGY (2024)

Article Chemistry, Physical

Flexoelectrically augmented triboelectrification enabled self-power wireless smart home control system

Dae Sol Kong, Kyung Hoon Kim, Ying Chieh Hu, Jong Hun Kim, Inseo Kim, Jeongwan Lee, Joonhyuk Lee, Won Hyuk Shon, Hanjin Yoo, Chul-Un Ro, Seungsu Lee, Hyoungjeen Jeen, Minbaek Lee, Minseok Choi, Jong Hoon Jung

Summary: With the rapid development of the Internet of Things and artificial intelligence, smart home has emerged to fulfill the security, convenience, and energy-saving issues of modern life. A flexoelectric mica crystal is used to augment the finger touch-driven triboelectric output for operating a wireless and multichannel smart home controller. This work provides important ingredients for enhancing triboelectric output and realizing a convenient, multifunctional, cost-effective, and adaptable smart home control system without batteries.

NANO ENERGY (2024)

Article Chemistry, Physical

Enhance vortices vibration with Y-type bluff body to decrease arousing wind speed and extend range for flag triboelectric energy harvester

Yi Han, Fang Wu, Xiaozhen Du, Zihao Li, Haixiang Chen, Dongxing Guo, Junlei Wang, Hong Yu

Summary: This paper presents a novel type of triboelectric nanogenerator that utilizes wind energy, with a Y-type bluff body to enhance vibration and output power. The application of this generator successfully provides power for a wireless temperature and humidity sensor.

NANO ENERGY (2024)

Article Chemistry, Physical

Surface-interspersed nanoparticles induced cathode-electrolyte interphase enabling stable cycling of high-voltage LiCoO2

Wen Zhang, Fangyuan Cheng, Miao Chang, Yue Xu, Yuyu Li, Shixiong Sun, Liang Wang, Leimin Xu, Qing Li, Chun Fang, Meng Wang, Yuhao Lu, Jiantao Han, Yunhui Huang

Summary: This study successfully induced the formation of a uniform and robust CEI by constructing ZrO2 nano-rivets on the surface of LCO, stabilizing the surface of high-voltage LCO and facilitating lithium-ion diffusion.

NANO ENERGY (2024)

Article Chemistry, Physical

Asperity shape in flexoelectric/triboelectric contacts

Karl P. Olson, Laurence D. Marks

Summary: This paper investigates the role of contacting shapes in triboelectricity and provides scaling rules for designing energy harvesting devices.

NANO ENERGY (2024)

Article Chemistry, Physical

Externally motionless triboelectric nanogenerator based on vortex-induced rolling for omnidirectional wind energy harvesting

Jong-An Choi, Jingu Jeong, Mingyu Kang, Hee-Jin Ko, Taehoon Kim, Keun Park, Jongbaeg Kim, Soonjae Pyo

Summary: Wind-driven triboelectric nanogenerators (WTENGs) are a promising emerging technology for sustainable wind energy harvesting, offering high output performance, lightweight design, and compact dimensions. This study introduces an innovative WTENG design that leverages a rolling-based mechanism to achieve efficient omnidirectional wind energy harvesting.

NANO ENERGY (2024)

Article Chemistry, Physical

Flag-type hybrid nanogenerator utilizing flapping wakes for consistent high performance over an ultra-broad wind speed range

Liwei Dong, Qian Tang, Chaoyang Zhao, Guobiao Hu, Shuai Qu, Zicheng Liu, Yaowen Yang

Summary: This paper proposes a novel hybrid scheme for flag-type nanogenerators (FNGs) that enhances their performance and broadens their operational wind speed ranges by harnessing the synergistic potential of two aerodynamic behaviors. The proposed flag-type triboelectric-piezoelectric hybrid nanogenerator (FTPNG) integrates flapping piezoelectric flags (PEFs) and a fluttering triboelectric flag (TEF). The FTPNG achieves significant power generation and a broad wind speed range, surpassing other FNGs, making it suitable for various self-powered systems and Internet of Things applications.

NANO ENERGY (2024)

Review Chemistry, Physical

Marine biomaterial-based triboelectric nanogenerators: Insights and applications

Yunmeng Li, Xin Liu, Zewei Ren, Jianjun Luo, Chi Zhang, Changyong (Chase) Cao, Hua Yuan, Yaokun Pang

Summary: The demand for green and eco-friendly materials is growing due to increasing environmental concerns related to traditional petroleum-based products. Marine biomaterials have emerged as a promising alternative, thanks to their abundant availability, biocompatibility, biodegradability, and low toxicity. In this review, we discuss the development and applications of triboelectric nanogenerators (TENGs) based on marine biomaterials. The operational modes, foundational principles, intrinsic qualities, and advantages of marine biomaterials commonly used in TENG designs are highlighted. Approaches to enhance the efficacy of TENGs derived from marine biomaterials are also discussed, along with documented applications from existing literature. Furthermore, the existing challenges and future directions in marine biomaterial-inspired TENGs are explored.

NANO ENERGY (2024)

Article Chemistry, Physical

Pathway to high performance, low temperature thin-film solid oxide cells grown on porous anodised aluminium oxide

Matthew P. Wells, Adam J. Lovett, Yizhi Zhang, Zhongxia Shang, Kosova Kreka, Babak Bakhit, Haiyan Wang, Albert Tarancon, Judith L. MacManus-Driscoll

Summary: Reversible solid oxide cells (rSOCs) offer a promising solution to efficient energy conversion, but have been limited in portable power and electrolysis applications due to excessive polarisation resistance of the oxygen electrode at low temperatures. This study demonstrates the growth of symmetric and complete rSOC structures with reduced polarisation resistance by tuning oxygen vacancy through annealing, providing a promising route towards high-performance rSOC devices for portable power applications.

NANO ENERGY (2024)

Article Chemistry, Physical

Construction of low dielectric aqueous electrolyte with ethanol for highly stable Zn anode

Kangkang Bao, Minghui Wang, Yue Zheng, Panpan Wang, Liwen Yang, Yang Jin, Hui Wu, Bin Sun

Summary: This study utilizes ethanol as an electrolyte additive to modulate the migration of zinc ions and the surface structure of zinc anodes, resulting in improved capacity retention and cycle life of zinc-based aqueous batteries.

NANO ENERGY (2024)

Article Chemistry, Physical

Ultrathin nanolayer constituted by a natural polysaccharide achieves egg-box structured SnO2 nanoparticles toward efficient and stable perovskite solar cells

Haichao Yang, Wensi Cai, Ming Wang, Saif M. H. Qaid, Zhiyuan Xu, Huaxin Wang

Summary: The introduction of sodium alginate (SA) into perovskite solar cells improves the carrier dynamics, stability, and performance by inhibiting nonradiative recombination and retarded charge dynamics.

NANO ENERGY (2024)

Article Chemistry, Physical

All-in-one multifunctional and deformation-insensitive carbon nanotube nerve patches enabling on-demand interactions

Cuirong Zhang, Mingyuan Wei, Zihan Chen, Wansheng Lin, Shifan Yu, Yijing Xu, Chao Wei, Jinwei Zhang, Ziquan Guo, Yuanjin Zheng, Qingliang Liao, Xinqin Liao, Zhong Chen

Summary: Artificial Intelligence of Things (AIoT) aims to establish smart and informative interactions between humans and devices. However, common pixelated sensing arrays in AIoT applications present problems such as hard and brittle devices, complex structures, and low precision. This article introduces an innovative solution called the all-in-one intelligent semitransparent interactive nerve patch (AISI nerve patch), which integrates sensing, recognition, and transmission functionalities into a thin and flexible patch. The AISI nerve patch is semitransparent, allowing for accurate identification without affecting aesthetics, and it can be attached to any curved surface for intelligent and interactive applications. With rapid response time and high precision recognition, it enables the integration of artificial intelligence and achieves high recognition accuracy for further development of AIoT.

NANO ENERGY (2024)

Article Chemistry, Physical

Engineering anion defects of ternary V-S-Se layered cathodes for ultrafast zinc ion storage

Youcun Bai, Heng Zhang, Huijun Song, Chong Zhu, Lijin Yan, Qin Hu, Chang Ming Li

Summary: A novel stainless-steel supported lattice-mismatched V-S-Se layered compound with high selenium vacancy was synthesized by adjusting the molar ratio of sulfur to selenium. The introduction of selenium vacancies created additional redox peaks of sulfur, providing more mass transport channels and active sites for zinc ions. The specific capacity and cycle stability of the electrode were significantly improved, demonstrating great potential for practical applications and providing insights into the effects of defects on battery performance.

NANO ENERGY (2024)

Article Chemistry, Physical

Defect-management-induced multi-stimulus-responsive mechanoluminescence in Mn2+doped gallate compound

Yao Xiao, Puxian Xiong, Yakun Le, Zhenjie Lun, Kang Chen, Zhiduo Wang, Peishan Shao, Zhicong Chen, Dongdan Chen, Zhongmin Yang

Summary: This study successfully synthesized a material with multi-stimulus-responsive luminescence and confirmed the internal relationship between luminescence and defects by regulating the distribution and depth of defects. The dynamic process of multi-stimulus-responsive luminescence was validated by experimental and calculation results.

NANO ENERGY (2024)