4.4 Article

The spectral geometry of de Sitter space in asymptotic safety

期刊

JOURNAL OF HIGH ENERGY PHYSICS
卷 -, 期 8, 页码 -

出版社

SPRINGER
DOI: 10.1007/JHEP08(2022)040

关键词

Models of Quantum Gravity; Nonperturbative Effects; Renormalization Group; Effective Field Theories

向作者/读者索取更多资源

Within the functional renormalization group approach to Background Independent quantum gravity, the scale dependent effective geometry of the de Sitter solution dS(4) is explored. The study reveals that the ultraviolet of Quantum Einstein Gravity comprises far less effective degrees of freedom than predicted by background dependent reasoning. Additionally, the research uncovers the fragmentation effect of spatial geometry in the quantum spacetime and the importance of a set of distinguished field modes.
Within the functional renormalization group approach to Background Independent quantum gravity, we explore the scale dependent effective geometry of the de Sitter solution dS(4). The investigation employs a novel approach whose essential ingredient is a modified spectral flow of the metric dependent d'Alembertian, or of similar hyperbolic kinetic operators. The corresponding one-parameter family of spectra and eigenfunctions encodes information about the nonperturbative backreaction of the dynamically gravitating vacuum fluctuations on the mean field geometry of the quantum spacetime. Used as a diagnostic tool, the power of the spectral flow method resides in its ability to identify the scale dependent subsets of field modes that supply the degrees of freedom which participate in the effective field theory description of the respective scale. A central result is that the ultraviolet of Quantum Einstein Gravity comprises far less effective degrees of freedom than predicted (incorrectly) by background dependent reasoning. The Lorentzian signature of dS(4) is taken into account by selecting a class of renormalization group trajectories which are known to apply to both the Euclidean and a Lorentzian version of the approach. Exploring the quantum spacetime's spatial geometry carried by physical fields, we find that 3-dimensional space disintegrates into a collection of coherent patches which individually can, but in their entirety cannot be described by one of the effective average actions occurring along the renormalization group trajectory. A natural concept of an entropy is introduced in order to quantify this fragmentation effect. Tentatively applied to the real Universe, surprising analogies to properties of the observed cosmic microwave background are uncovered. Furthermore, a set of distinguished field modes is found which, in principle, has the ability to transport information about the asymptotic fixed point regime from the ultraviolet, across almost the entire scale history, to cosmological distances in the observed Universe.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据