4.7 Article

The effect of a polystyrene nanoplastic on the intestinal microbes and oxidative stress defense of the freshwater crayfish, Procambarus clarkii

期刊

SCIENCE OF THE TOTAL ENVIRONMENT
卷 833, 期 -, 页码 -

出版社

ELSEVIER
DOI: 10.1016/j.scitotenv.2022.155722

关键词

Lactobacillus; Probiotics; Pathogenic bacteria; 16S rRNA; P; clarkii; Antioxidant response

资金

  1. National Key R&D Program of China [2020YFD0900305]
  2. Unit Project implementation Plan-Fisheries Ecology and Resources monitoring in Jiangsu Province, China
  3. Science Foundation of Jiangsu China [BK20191488]
  4. earmarked fund for Jiangsu Agricultural Industry Technology System [JATS [2021] 415]

向作者/读者索取更多资源

This study investigated the acute effects of 75 nm polystyrene nanoplastic on the intestinal microbiota and oxidative stress parameters of freshwater crayfish. The results revealed that nanoplastic exposure can alter the richness, diversity, and composition of the intestinal microbiota in freshwater crayfish, leading to an increase in some pathogenic bacteria and a decrease in the relative abundance of lactic acid bacteria. Meanwhile, nanoplastic exposure also significantly affected the oxidative stress parameters of freshwater crayfish. The study suggests that Lactobacillus may play a role in alleviating the oxidative stress caused by nanoplastic exposure.
The widespread generation and accumulation of plastic waste has become a globally recognized problem. However, there are limited reports on the adverse effects of nanomaterials on freshwater crustaceans. This study tested the acute effects of different concentrations (0, 5, 10, and 20 mg/L) after 48 h exposure of 75 nm polystyrene nanoplastic on intestinal microbes, and oxidative stress parameters of freshwater crayfish, Procambarus clarkii. High-throughput sequencing analysis revealed the richness, diversity, and composition of intestinal microbiota in P. clarkii exposed to polystyrene nanoplastic. At the genus level, abundances of Lactobacillus, Faecalibaculum, Niveibacterium, and Candidatus Bacilloplasma were significantly different. The reduced abundance of Lactobacillus could affect the balance of intestinal microbes through quantitative disadvantage, which may lead to reduced immunity of P. clarkii. Streptococcus salivarius, Clostridium butyricum and Lachnospiraceae bacterium10-1 in intestinal tract reached maximum abundance at a polystyrene concentration of 20 mg/L. The increase in the number of some pathogenic bacteria may upset the balance of intestinal microorganisms through the number of dominance, and the decrease in the relative abundance of lactic acid bacteria. Probiotics, such as Lactobacillus salivarius, Lactobacillus murinus, Lactobacillus gasseri, Lactobacillus reuteri, Lactobacillus iners AB-1, and Lactobacillus crispatus in the intestinal tract reached the lowest value at a concentration of 10 mg/L. The reduced abundance of Lactobacillus can affect the balance of intestinal microbes through quantitative disadvantage, which may lead to reduced immunity in P. clarkii. At nanoplastic 10 mg/L, the relative abundance of intestinal pathogens increased, while the relative abundance of lactic acid bacteria and other probiotics decreased. With increases in nanoplastic concentrations, the values of glutathione (GSH), superoxide dismutase (SOD), acid phosphatase (ACP), lysozyme (LZM), alkaline phosphatase (AKP), peroxidase (POD), glutathione peroxidase (GPX), and protein carbonylation were significantly changed. Our data suggested that Lactobacillus may play an adjunctive role in the treatment of oxidative stress in P. clarkii exposed to 75 nm polystyrene. This study represents an important step towards a better understanding of the toxic effects of nanoplastics on aquatic crustaceans.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据