4.8 Article

Multiparameter evaluation of in vivo gene delivery using ultrasound-guided, microbubble-enhanced sonoporation

期刊

JOURNAL OF CONTROLLED RELEASE
卷 223, 期 -, 页码 157-164

出版社

ELSEVIER SCIENCE BV
DOI: 10.1016/j.jconrel.2015.12.001

关键词

Ultrasound; Topic; Microbubbles; Sonoporation; Gene therapy

资金

  1. California Institute for Regenerative Medicine [CIRM TR406713]
  2. NIH [RO1CA112356, NIHR01CA103828, R01CA199658, T32EB003827]
  3. Milgrom Family Support Program for the Hebrew University
  4. Aharon and Ephraim Katzir Travel Grant

向作者/读者索取更多资源

More than 1800 gene therapy clinical trials worldwide have targeted a wide range of conditions including cancer, cardiovascular diseases, and monogenic diseases. Biological (i.e. viral), chemical, and physical approaches have been developed to deliver nucleic acids into cells. Although viral vectors offer the greatest efficiency, they also raise major safety concerns including carcinogenesis and immunogenicity. The goal of microbubble-mediated sonoporation is to enhance the uptake of drugs and nucleic acids. Insonation of microbubbles is thought to facilitate two mechanisms for enhanced uptake: first, deflection of the cell membrane inducing endocytotic uptake, and second, microbubble jetting inducing the formation of pores in the cell membrane. We hypothesized that ultrasound could be used to guide local microbubble-enhanced sonoporation of plasmid DNA. With the aim of optimizing delivery efficiency, we used nonlinear ultrasound and bioluminescence imaging to optimize the acoustic pressure, microbubble concentration, treatment duration, DNA dosage, and number of treatments required for in vivo Luciferase gene expression in a mouse thigh muscle model. We found that mice injected with 50 mu g luciferase plasmid DNA and 5 x 10(5) microbubbles followed by ultrasound treatment at 1.4 MHz, 200 kPa, 100-cycle pulse length, and 540 Hz pulse repetition frequency (PRF) for 2 min exhibited superior transgene expression compared to all other treatment groups. The bioluminescent signal measured for these mice on Day 4 post-treatment was 100-fold higher (p < 0.0001, n=5 or 6) than the signals for controls treated with DNA injection alone, DNA and microbubble injection, or DNA injection and ultrasound treatment. Our results indicate that these conditions result in efficient gene delivery and prolonged gene expression (up to 21 days) with no evidence of tissue damage or off-target delivery. We believe that these promising results bear great promise for the development of microbubble-enhanced sonoporation-induced gene therapies. (C) 2015 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据